
Sorting Algorithms Algorithm Design Techniques

Principles of Computer Science II
Sorting Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 3

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 1 / 33



Sorting Algorithms Algorithm Design Techniques

Sorting problem

Sorting Problem

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.6 - Sorting Problem

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 2 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 3 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 4 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

min = i

for j in range(i + 1, len(a) - 1):

if a[j] < a[min]:

min = j

temp = a[j]

a[j] = a[min]

a[min] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 5 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

How much memory is needed ?
2 additional slot (min and temp) - constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Algorithm

Bubble Sort is an algorithm which is used to sort N elements that
are given in a memory. Bubble Sort compares all the element one
by one and sort them based on their values.

It is called Bubble sort, because with each iteration the largest
element in the list bubbles up towards the last place, just like
a water bubble rises up to the water surface.
Sorting takes place by stepping through all the data items
one-by-one in pairs and comparing adjacent data items and
swapping each pair that is out of order.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sorting: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 8 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

for j in range(0, len(a) - i - 1):

if a[j] > a[j+1]:

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

The above algorithm is not efficient because as per the above
logic, the for-loop will keep executing for six iterations even if
the list gets sorted after the second iteration.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 9 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code: Version 2

We can insert a flag and can keep checking whether swapping
of elements is taking place or not in the following iteration.
If no swapping is taking place, it means the list is sorted and
we can jump out of the for loop, instead executing all the
iterations.

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

for j in range(0, len(a) - i - 1):

if a[j] > a[j+1]:

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
How many loops are required?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
How many loops are required?
The list is already sorted

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
How many loops are required?
The list is already sorted
N comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
How many loops are required?
The list is already sorted
N comparisons are required

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
How many loops are required?
The list is already sorted
N comparisons are required

How much memory is needed ?
1 additional slot (naive solution)
2 additional slot (temp + flag in the optimized solution)
...however, constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insert Sort Algorithm

A simple Sorting algorithm which sorts the list by shifting elements
one by one.

It has one of the simplest implementation
It is efficient for smaller data sets, but very inefficient for
larger lists.
Insertion Sort is adaptive, that means it reduces its total
number of steps if given a partially sorted list, hence it
increases its efficiency.
It is better than Selection Sort and Bubble Sort algorithms.
Like Bubble Sorting, insertion sort also requires a single
additional memory space.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insertion Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 13 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insertion Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(1, len(a)):

key = a[i]

j = i - 1

while j >= 0 and key < a[j]:

a[j+1] = a[j]

j -= 1

a[j+1] = key

key: we put each element of the list, in each pass, starting
from the second element: a[1].
using the while loop, we iterate, until j becomes equal to zero
or we find an element which is greater than key, and then we
insert the key at that position.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 14 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
The list is already sorted
N comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
The list is already sorted
N comparisons are required

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many comparisons are required until the list is sorted?
1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

Is there a “simple” case ?
The list is already sorted
N comparisons are required

How much memory is needed ?
2 additional slot (key, j)
constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 33



Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Algorithm

In Merge Sort the unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

Divide and Conquer algorithm
Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 33



Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 17 / 33



Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def mergesort(list):

if len(list) == 1:

return list

left = list [0: len(list) // 2]

right = list[len(list) // 2:]

left = mergesort(left)

right = mergesort(right)

return merge(left , right)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 18 / 33



Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Code

def merge(left , right):

result = []

while len(left) > 0 and len(right) > 0:

if left [0] <= right [0]:

result.append(left.pop(0))

else:

result.append(right.pop (0))

while len(left) > 0:

result.append(left.pop(0))

while len(right) > 0:

result.append(right.pop (0))

return result

print("Before: ", a)

r = mergesort(a)

print("After: ", r)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 19 / 33



Sorting Algorithms Algorithm Design Techniques

Merge Sort

How good is Merge Sort?

How many comparisons are required until the list is sorted?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

How much memory is needed ?
1 additional slot (result, larger).

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 20 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Algorithm

Quick sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

Elements less than the Pivot element

Pivot element(Central element)

Elements greater than the pivot element

Sorts any list very quickly
Performance depends on the selection of the Pivot element

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 21 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort: Example

List: 25 52 37 63 14 17 8 6

We pick 25 as the pivot.
All the elements smaller to it on its left,
All the elements larger than to its right.
After the first pass the list looks like:
6 8 17 14 25 63 37 52
Now we sort two separate lists:
6 8 17 14 and 63 37 52
We apply the same logic, and we keep doing this until the
complete list is sorted.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 22 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 23 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def partition(list , p, r):

pivot = list[p]

i = p

j = r

while (1):

while(list[i] < pivot and list[i] != pivot):

i += 1

while(list[j] > pivot and list[j] != pivot):

j -= 1

if(i < j):

temp = list[i]

list[i] = list[j]

list[j] = temp

else:

return j

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 24 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Code

def quicksort(list , p, r):

if (p < r):

q = partition(list , p, r)

quicksort(list , p, q);

quicksort(list , q + 1, r);

print("Before: ", a)

quicksort(a, 0, len(a) - 1)

print("After: ", a)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 25 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

What if we choose the median item as pivot?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many comparisons are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

Σ n(n−1)
2 comparisons are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

How much memory is needed ?
2 small additional slots.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 33



Sorting Algorithms Algorithm Design Techniques

Algorithm Design Techniques

Computer scientists have discovered that many algorithms share
similar ideas, even though they solve very different problems.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 27 / 33



Sorting Algorithms Algorithm Design Techniques

Daily life problem

Jones, Pevzner: An Introduction to Bioinformatics Algorithms.
MIT Press, 2004
Section 2.9

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 33



Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

You ignore that the phone is ringing
You walk through every possible angle of the room to find the
phone
You eventually find the phone, but you won’t be able to
answer

You can optimize such an approach by omitting or pruning
part the alternatives (e.g., if the phone is ringing above your
head, just look everywhere upstairs!)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 29 / 33



Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

You ignore that the phone is ringing
You walk through every possible angle of the room to find the
phone
You eventually find the phone, but you won’t be able to
answer
You can optimize such an approach by omitting or pruning
part the alternatives (e.g., if the phone is ringing above your
head, just look everywhere upstairs!)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 29 / 33



Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

Is one of the algorithms for sorting doing brute force?

No, how would that be?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 29 / 33



Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Walk in the direction of the telephone’s ringing until you
found it.

If there is a wall (or an expensive and fragile vase) between
you and the phone, prevents you from finding the phone.

Unfortunately, these sorts of difficulties frequently occur in
most realistic problems.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 30 / 33



Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Is one of the algorithms for sorting greedy?

Selection sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 30 / 33



Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Is one of the algorithms for sorting greedy?

Selection sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 30 / 33



Sorting Algorithms Algorithm Design Techniques

Dynamic Programming problems

Split a problem into subproblems and solve each subproblem
to solve the general problem (example, insertion sort)
Not applicable to the problem of the phone.
You want to turn on to fresh all the rooms of your house.
You solve the problem room by room by turning on the AC at
the proper temperature (depending on sun exposition, for
example) in each room.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 31 / 33



Sorting Algorithms Algorithm Design Techniques

Divide and conquer Algorithms

Split the problem of finding the phone into subproblems and
solve each subproblem to solve the general problem and then
merge the solutions

We have seen two algorithms working in this way: Merge Sort
and Quick Sort

This approach goes along with recursion

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 32 / 33



Sorting Algorithms Algorithm Design Techniques

Randomized Algorithms

Toss a coin to decide whether you want to start your search
on the first floor if the coin comes up heads, or on the second
floor if the coin comes up tails (you can also use a die).

We have seen an algorithm working in this way: Quick Sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 33 / 33


	Sorting Algorithms
	Sorting problem
	Selection Sorting
	Bubble Sorting
	Insertion Sorting
	Merge Sort
	Quick Sort

	Algorithm Design Techniques

