
Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Principles of Computer Science II
Divide and Conquer Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 10

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 1 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Divide and Conquer Algorithms

A divide-and-conquer algorithm proceeds in two distinct phases:

1 a divide phase in which the algorithm splits a problem
instance into smaller problem instances and solves them;

2 a conquer phase in which it stitches the solutions to the
smaller problems into a solution to the bigger one.

Why do we need it?

This strategy often works when a solution to a large problem can
be built from the solutions of smaller problem instances.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 2 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Algorithm

In Merge Sort, an unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

Divide and Conquer algorithm
Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 3 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort: Example

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 4 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def mergesort(list):

if len(list) == 1:

return list

left = list [0: len(list) // 2]

right = list[len(list) // 2:]

left = mergesort(left)

right = mergesort(right)

return merge(left , right)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 5 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Code

def merge(left , right):

result = []

while len(left) > 0 and len(right) > 0:

if left [0] <= right [0]:

result.append(left.pop(0))

else:

result.append(right.pop (0))

while len(left) > 0:

result.append(left.pop(0))

while len(right) > 0:

result.append(right.pop (0))

return result

print("Before: ", a)

r = mergesort(a)

print("After: ", r)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 6 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

How good is Merge Sort?

How many comparisons are required until the list is sorted?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 7 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Divide and conquer for search problem - Binary Search

Binary search is an efficient algorithm for finding an element
in a sorted list.

It requires the array to be sorted.

The time complexity is O(log n).

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 8 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

How it Works

1 Compare the target element with the middle element of the
array.

2 If the target is equal to the middle element, the element is
found.

3 If the target is smaller, search in the left half; if it’s larger,
search in the right half.

4 Repeat until the element is found or the array is exhausted.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 9 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Binary Search Python program

def binary_search(arr , x):

left , right = 0, len(arr) - 1

while left <= right:

mid = (left + right) // 2

if arr[mid] == x:

return mid

elif arr[mid] >= x:

left = mid + 1

else:

right = mid - 1

return -1

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 10 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Example

Array: {1, 2, 4, 5, 7, 9, 10, 15, 20, 25, 30, 35, 40, 50}
Target: 15

1 left = 0, right = 13

2 mid = 6 (array[mid] = 10), since 15 > 10, search in the
right half

3 Update left to mid + 1 = 7

4 mid = 10 (array[mid] = 30), since 15 < 30, search in the
left half

5 Update right to mid - 1 = 9

6 mid = 8 (array[mid] = 20), since 15 < 20, search in the
left half

7 Update right to mid - 1 = 7

8 mid = 7 (array[mid] = 15), target found at index 7

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 11 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Complexity

Time Complexity: O(log n) – the number of elements is
halved at each step.

Space Complexity: O(1) for the iterative implementation.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 12 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Problem: Lots of data

Example: Homo sapiens high coverage assembly GRCh37
27478 contigs
contig length total 3.2 Gbase.
chromosome length total 3.1 Gbase.
Multiple TBs of data for human genome.

One computer can read 30-35MB/sec from disc
∼ 10 months to read the data

∼ 100 hard drives just to store the data in compressed format
Even more to do something with the data.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 13 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Spread the work over many machines

Good news: same problem with 1000 machines: ≤ 1 hour
Bad news: concurrency

communication and coordination
recovering from machine failure
status reporting
debugging
optimization

Bad news 2: repeat for every problem you want to solve

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 14 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Computing Clusters

Many racks of computers
Thousands of machines per cluster
Limited bandwidth between racks

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 15 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Computing Environment

Each machine has 2-4 CPUs
Typically quad-core
Future machines will have more cores

1-6 locally-attached disks
∼ 10TB of disk

Overall performance more important than peak performance
of single machines
Reliability

In 1 server environment, it may stay up for three years (1000
days)
If you have 10000 servers, expect to lose 10 each day

Ultra reliable hardware still fails
We need to keep in mind cost of each machine

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 16 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Map Reduce Computing Paradigm

A simple programming model
Applies to large-scale computing problems

Hides difficulties of concurrency
automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures
robustness
improvements to core libraries benefit all users of library

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 17 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

A typical problem

Read a lot of data
Map: extract something important from each record
Shuffle and sort
Reduce: aggregate, summarize, filter or transform
Write the results

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 18 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

How map works

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 19 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 20 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 21 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

How reduce works

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 22 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Word Count example

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 23 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

In more details

Programmer specifies two primary methods:
map(k , v , script) → < k ′, v ′ >∗

Takes a key-value pair and outputs a set of key-value pairs
arranged according to script
There is one Map call for every (k, v) pair

reduce(k ′, < v ′ >∗, script′) → < k ′, v ′ > ∗
All values v’ with same key k’ are reduced together with
script′ and processed in v’ order
There is one Reduce function call per unique key k’

All v ′ with same k ′ are reduced together with script′, in order.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 24 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

A typical exercise for a new engineer in his/her first week:

Input files with one document per record
Specify a map function that takes a key/value pair

key = document URL
value = document contents

Output of map function is (potentially many) key/value pairs.
In this case, output:
(word, 1) once per word in the document

“document 1”, “CTGGGCTAA”
converted to
(C, 1), (T, 1), (G, 1), . . .

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 25 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

MapReduce library gathers together all pairs with the same
key (shuffle/sort)
The reduce function combines the values for a key
In this example:

key = “A”
values = 1, 1
summarize
2

key = “G”
values = 1, 1, 1
summarize
3

key = “C”
values = 1, 1
summarize
2

key = “T”
values = 1, 1
summarize
2

Output of reduce paired with key and saved

(A, 3), (G, 3), (C, 2), (T, 2)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 26 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

s = ’CTGGGCTAA ’

seq = list(s) # [’C’, ’T’, ’G’, ’G’, ’G’, ’C’, ’T’, ’A’, ’A

’]

sc.map(lambda symbol: (symbol , 1))\

.reduce(add)\

.collect ()

Output:

[(’A’, 2), (’C’, 2), (’G’, 3), (’T’, 2)]

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 27 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Fault tolerance: handled via re-execution

In large scale computation on multiple nodes, there is a master
that orchestrate the entire computation and workers that executes
what the master tell them to do.

On worker failure:
Detect failure via periodic heartbeats
Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks
Task completion committed through master

On master failure:
Restart execution

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 28 / 29



Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Let us see map reduce in Python

Open this Jupyter Notebook and
let us see how to use MapReduce
(there are two exercises at the
end): https:
//drive.google.com/file/d/

1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/

view?usp=drive_link

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 29 / 29

https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link

	Divide and Conquer algorithms
	Merge Sort
	Binary Search
	Large Scale Computation
	Introduction to Large Scale Computation
	Map Reduce Computing Paradigm


