Divide and Conque

Principles of Computer Science Il
Divide and Conquer Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 10

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 1 /29

Divide and Conquer algorithms
°

Divide and Conquer Algorithms

A divide-and-conquer algorithm proceeds in two distinct phases:

© a divide phase in which the algorithm splits a problem
instance into smaller problem instances and solves them;

@ a conquer phase in which it stitches the solutions to the
smaller problems into a solution to the bigger one.

Why do we need it?

This strategy often works when a solution to a large problem can
be built from the solutions of smaller problem instances.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 2 /29

Divide and Conquer algorithms Merge Sort

00000

Merge Sort Algorithm

In Merge Sort, an unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

@ Divide and Conquer algorithm
@ Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 3 /29

e and Conquer algorithms Merge Sort

[e] lele]e}

Merge Sort: Example

Sorted sequence

merge

merge

merge

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 4 /29

Divide and Conquer algorithms Merge Sort

[e]e] lele}

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]
def mergesort(list):
if len(list) == 1:

return list

left = list[0: len(list) // 2]
right = list[len(list) // 2:]

left = mergesort(left)
right = mergesort(right)

return merge (left, right)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 5 /29

de and Conquer alg Merge Sort

[e]e]e] le}

Merge Sort Code

def merge(left, right):
result = []
while len(left) > 0 and len(right) > O0:
if left[0] <= right[0]:
result.append(left.pop (0))
else:
result.append (right.pop (0))

while len(left) > O:
result.append(left.pop(0))

while len(right) > O:
result.append(right.pop (0))

return result
print ("Before: ", a)

r = mergesort (a)
print ("After: ", r)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms

Lecture 10

6 /29

Merge Sort
[e]e]ele]]

How good is Merge Sort?

@ How many comparisons are required until the list is sorted?
1°* loop: two lists 5 each

2" loop: four lists 4 each

log n steps

For each partition we do n comparisons

In total nlog n comparisons

M Zecchini e e e e BT R

Binary Search
[JeJele]e]

Divide and conquer for search problem - Binary Search

@ Binary search is an efficient algorithm for finding an element
in a sorted list.

@ It requires the array to be sorted.

@ The time complexity is O(log n).

M Zecchini S R S e DN A SRS Lectue 10 8/ 29

Binary Search
(o] lele]e]

How it Works

© Compare the target element with the middle element of the
array.

@ If the target is equal to the middle element, the element is
found.

© If the target is smaller, search in the left half; if it's larger,
search in the right half.

@ Repeat until the element is found or the array is exhausted.

M Zecchini e e e e T

Binary Search
00e00

Binary Search Python program

def binary_search(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == x:
return mid
elif arr[mid] >= x:
left = mid + 1
else:
right = mid - 1
return -1

M Zecchini T e S e DA SRS ES RS Lecture 10 10/ 29

Binary Search
[e]ele] o]

Example

e Array: {1, 2,4,5,7,9, 10, 15, 20, 25, 30, 35, 40, 50}
o Target: 15
Q left =0, right =13

@ mid = 6 (array[mid] = 10), since 15 > 10, search in the
right half

Update left tomid + 1 = 7

mid = 10 (array[mid] = 30), since 15 < 30, search in the
left half

Update right tomid - 1 = 9

o
@ mid = 8 (array[mid] = 20), since 15 < 20, search in the
left half

Update right tomid - 1 = 7
mid = 7 (array[mid] = 15), target found at index 7
M.Zecchini " Principles of Computer Science II: Divide and Conquer Algorithms ~ Lecture 10 11 / 29

© 0

Binary Search
[ee]e]e]]

Complexity

e Time Complexity: O(log n) — the number of elements is
halved at each step.

@ Space Complexity: O(1) for the iterative implementation.

M Zecchini T e S e DA SRS ARSI Lecture 10 12/ 29

Large Scale Computation
€000
ntroduction to Large Scale Computation

Problem: Lots of data

@ Example: Homo sapiens high coverage assembly GRCh37
e 27478 contigs
e contig length total 3.2 Gbase.
e chromosome length total 3.1 Gbase.
e Multiple TBs of data for human genome.
@ One computer can read 30-35MB/sec from disc
e ~ 10 months to read the data
@ ~ 100 hard drives just to store the data in compressed format
@ Even more to do something with the data.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 13 / 29

Large Scale Computation
[o] le]e}

Spread the work over many machines

@ Good news: same problem with 1000 machines: < 1 hour
@ Bad news: concurrency

e communication and coordination

e recovering from machine failure

e status reporting

e debugging

e optimization
@ Bad news 2: repeat for every problem you want to solve

M Zecchini T e S e DA SR ARSI Lecture 10 14/ 29

Large Scale Computation
[e]e] T}

Computing Clusters

@ Many racks of computers
@ Thousands of machines per cluster
@ Limited bandwidth between racks

M.Zecchini

Lecture 10 15 / 29

Large Scale Computation
oooe
ntroduction to Large Scale Computation

Computing Environment

@ Each machine has 2-4 CPUs
o Typically quad-core
e Future machines will have more cores
@ 1-6 locally-attached disks
e ~ 10TB of disk
@ Overall performance more important than peak performance
of single machines
o Reliability
o In 1 server environment, it may stay up for three years (1000
days)
o If you have 10000 servers, expect to lose 10 each day
@ Ultra reliable hardware still fails
o We need to keep in mind cost of each machine

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 16 / 29

Large Scale Computation
@®000000000000

Map Reduce Computing Paradigm

@ A simple programming model
e Applies to large-scale computing problems
o Hides difficulties of concurrency
e automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures
robustness
improvements to core libraries benefit all users of library

M Zecchini T e S e DN A ARSI Lecure 10 17/ 29

Large Scale Computation
O@00000000000

A typical problem

Read a lot of data

Map: extract something important from each record
Shuffle and sort

Reduce: aggregate, summarize, filter or transform
Write the results

M Zecchini T e S e DA SR CE SRR Lecture 10 18/ 29

ivide and Conquer algorithms e t ch Large Scale Computation

0O0O@0000000000

Map Reduce Computing Paradigm

How map works

Input Output

» Mapper b
» Mapper
» Mapper o

L] L]

L] .

[] []
p{ Mapper

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 19 / 29

Large Scale Computation
000@000000000
Map Reduce Computing Paradigm

Qutput

» ﬂthe"

Input

’ ”quiCk"

“the quick brown fox” » Mapper

» “brown”

p “fox”

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 20 / 29

Large Scale Computation
0000®00000000
Map Reduce Computing Paradigm

Input

Output

—»| Reducer g

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 21 / 29

Divide and Conquer algorithms

e Scale Computation
0000®0000000

Map Reduce Computing Paradigm

How reduce works

Input

[{“cat”: {[3, 4, 11}

—>

| {“mouse”: {[1, 2]}

Reducer

M.Zecchini

Output

*4

{“cat”: {8}

*4

{“mouse”: {3

b

Principles of Computer Science II: Divide and Conquer Algorithms

Lecture 10

22 / 29

Large Scale Computation
0000008000000

Word Count example

The overall MapReduce word count process

Input Spilitting Mapping Shuffling Reducing Final result

Deer Bear River ————=

Deer Bear River —_
Car Car River »| Car Car River -
Deer Car Bear :

\'\\ I
.
A DeerCarBear —— =

M.Zecchini

Lecture 10 23 / 29

Large Scale Computation
0000000800000
Map Reduce Computing Paradigm

In more details

@ Programmer specifies two primary methods:
o map(k,v,script) — < k',v/ >*
o Takes a key-value pair and outputs a set of key-value pairs
arranged according to script
@ There is one Map call for every (k,v) pair
o reduce(k’, < v/ >* script’) — < k',v/ > x
@ All values v' with same key k' are reduced together with
script’ and processed in v' order
@ There is one Reduce function call per unique key k'’

@ All v/ with same k' are reduced together with script’, in order.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 24 / 29

Divide and Conquer algorithms Sort 3 Search Large Scale Computation

000000000000 e0000

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

A typical exercise for a new engineer in his/her first week:
@ Input files with one document per record
@ Specify a map function that takes a key/value pair
o key = document URL
e value = document contents

@ Output of map function is (potentially many) key/value pairs.
@ In this case, output:
(word, 1) once per word in the document

“document 1", “CTGGGCTAA"

converted to

(C, 1), (T, 1), (G, 1), ...

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 25 / 29

Divide and Conquer algorithms se Sort Binary Search Large Scale Computation
o o «)¢ 0000000000000e000

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

e MapReduce library gathers together all pairs with the same

key (shuffle/sort)
@ The reduce function combines the values for a key

@ In this example:

key = “A” key = “G" key = “C" key = “T"
values =1, 1 values=1,1,1 values =1, 1 values =1, 1
summarize summarize summarize summarize

2 3 2 2

@ Output of reduce paired with key and saved

(A 3). (G, 3). (C, 2), (T, 2)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 26 / 29

Large Scale Computation
0000000000800

An example: Frequencies in DNA sequence

s = CTGGGCTAA’
seq = list(s) # [’C’, ’T’, ’G’, ’G’, ’G’, ’C’,
7]
sc.map (lambda symbol: (symbol, 1))\
.reduce (add)\
.collect ()

Output:
[¢ar, 2, ¢c’, 2, 6>, 3), (T, 2)]

M Zecchini e e e BTN

Large Scale Computation
0000000000080
Map Reduce Computing Paradigm

Fault tolerance: handled via re-execution

In large scale computation on multiple nodes, there is a master
that orchestrate the entire computation and workers that executes
what the master tell them to do.
@ On worker failure:

o Detect failure via periodic heartbeats

o Re-execute completed and in-progress map tasks

e Re-execute in progress reduce tasks

e Task completion committed through master

@ On master failure:
o Restart execution

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 10 28 / 29

Large Scale Computation
000000000000 e

Let us see map reduce in Python

Open this Jupyter Notebook and @ .
let us see how to use MapReduce

(there are two exercises at the

end): https: u te r
//drive.google.com/file/d/ J py
1C£3UWGZPi0G9iXvIXpsh2jI1Amu6Wl1E

view?usp=drive_link v

Lecture 10 29 / 29

M.Zecchini

https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link

	Divide and Conquer algorithms
	Merge Sort
	Binary Search
	Large Scale Computation
	Introduction to Large Scale Computation
	Map Reduce Computing Paradigm

