Principles of Computer Science II Working with Data Sets

Marco Zecchini

Sapienza University of Rome

Lecture 8

Analysis of Data

- Viewing and analyzing vast amounts of biological data in its unstructured entirety can be perplexing.
- It is easier to interpret data if it is organized into clusters that combine similar (i.e., related) data points.

Analyzing data from DNA microarray experiments (expression analysis – i.e., determining which genes are switched "on" or "off" under certain conditions of interest).

Building and understanding evolutionary trees based on genomic or other data.

Microarray Analysis

- What do newly sequenced genes do?
- Simply comparing new gene sequences to known DNA sequences often does not reveal the function of a new gene.
- For 40% of sequenced genes, functionality cannot be ascertained by comparing to sequences of other known genes.
- It is easier to interpret data if it is organized into clusters that combine similar (i.e., related) data points.

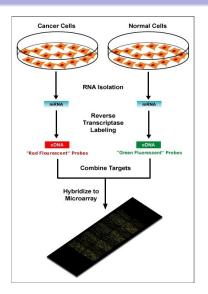
Microarrays and expression analysis

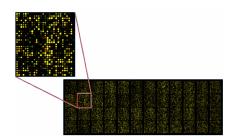
- Microarrays measure activity (expression level) of genes under varying conditions and/or points in time.
- Expression level is estimated by measuring amount of mRNA for that particular gene:
 - A gene is active if it is being transcribed.
 - More mRNA usually indicates more gene activity.

A Microarray Experiment

Examining Data

000000000





- Input: Biological samples (RNA) turned into fluorescent markers (cDNA), experimental conditions.
- Output: Numerical data on gene expression (matrix)

Microarray Data Transformation

- Microarray data are usually transformed into a (relative, normalized) intensity matrix
- Can also be represented as a bit matrix (log₂ of relative intensity)
- The intensity matrix allows biologists to infer correlations between different genes (even if they are dissimilar) and to understand how genes functions might be related
- Care must be taken to normalize the data appropriately, e.g. different time points can come from different arrays.

Microarray Data Intensity Matrix

 The intensity Matrix is composed by n rows one per each analyzed gene and m columns, one per each condition/time instant

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

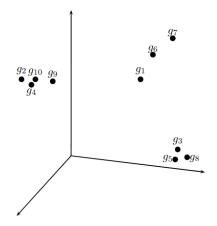
(a) Intensity matrix, I

Microarray Data Intensity Matrix

- The intensity Matrix is composed by n rows one per each analyzed gene and m columns, one per each condition/time instant
- Which genes are similar?
- How to measure the distance/similarity?

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

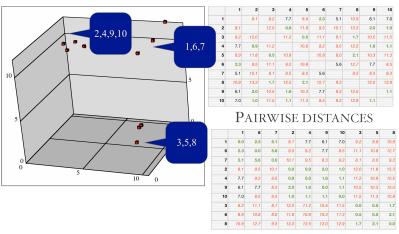
(a) Intensity matrix, I



Euclidean Distance in D-dimensions

$$D(x,y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Finding Similar Genes



REARRANGED DISTANCES

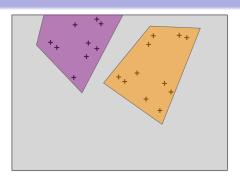
a Matication. Find nottowns in a case of dat

- Motivation: Find patterns in a sea of data
- Input

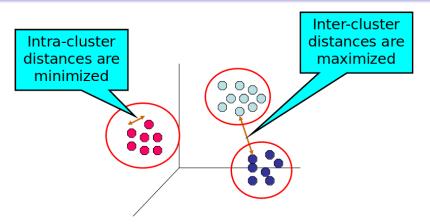
- A (large) number of datapoints: N
- ullet A measure of distance between any two data points d_{ij}
- Output
 - Groupings (clustering) of the elements into K (the number can be user-specified or automatically determined) 'similarity' classes
 - Sometimes there is also an objective measure that the obtained clustering seeks to minimize.

- Homogeneity elements of the same cluster are maximally close to each other.
- Separation elements in separate clusters are maximally far apart from each other.
- One is actually implied by the other (in many cases).
- Generally it is a hard problem.
 - Clustering in 2 dimensions looks easy
 - Clustering small amounts of data looks easy
 - High-dimensional spaces look different Almost all pairs of points are at about the same distance

- Both principles are violated
- Points in the same cluster are far apart
- Points in different cluster are close



- More reasonable assignment.
- We need to use an objective function to optimize cluster assignment.



- Suitably select distance metric.
- Maximize Inter-cluster distances.
- Minimize Intra-cluster distances.

- Each clustering problem is based on some kind of "distance" between points.
- Two major classes of distance measure:
 - Euclidean
 - On-Euclidean
- A Euclidean space has some number of real-valued dimensions.
 - There is a notion of "average" of two points.
 - A Euclidean distance is based on the locations of points in such a space.
- A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

d is a distance measure if it is a function from pairs of points to real numbers such that:

1 d(x, y) > 0

- **2** d(x, y) = 0 iff x = y
- **3** d(x, y) = d(y, x)
- 4 d(x,y) < d(x,z) + d(z,y) (triangle inequality)

The most common notion of "distance".

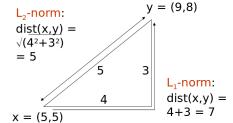
Some Euclidean Distances

 L_2 -norm: d(x, y) = square root of the sum of the squares of the differences between x and y in each dimension.

 L_1 -norm: sum of the differences in each dimension.

Manhattan distance = distance if you had to travel alor

Manhattan distance = distance if you had to travel along coordinates only.



Some Non-Euclidean Distances

Jaccard distance for sets = 1 minus ratio of sizes of intersection and union.

Edit distance = number of inserts and deletes to change one string into another.

Example: $p_1 = 10111$; $p_2 = 10011$.

Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = $\frac{3}{4}$.

$$d(x,y) = 1 - (Jaccard similarity) = \frac{1}{4}.$$

Why JD is a distance measure?

- ② d(x,y) = d(y,x) because union and intersection are symmetric
- $d(x,y) \ge 0 \text{ because } |x \cap y| \le |x \cup y|$

$$\left(1 - \frac{|\mathsf{x} \cap \mathsf{z}|}{|\mathsf{x} \cup \mathsf{z}|}\right) + \left(1 - \frac{|\mathsf{y} \cap \mathsf{z}|}{|\mathsf{y} \cup \mathsf{z}|}\right) \ge 1 - \frac{|\mathsf{x} \cap \mathsf{y}|}{|\mathsf{x} \cup \mathsf{y}|}$$

Edit Distance

The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:

$$d(x, y) = |x| + |y| - 2|LCS(x, y)|$$

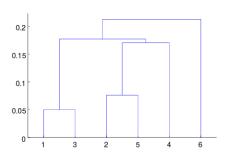
LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

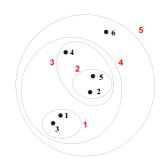
Example

- \bullet x = abcde; y = bcduve.
- Turn x into y by deleting a, then inserting u and v after d.
 Edit distance = 3.
- Or, LCS(x,y) = bcde.
- Note: $|x| + |y| 2|LCS(x, y)| = 5 + 6 2 \times 4 = 3 = \text{edit dist}$

- **1** d(x,x) = 0 because 0 edits suffice.
- ② d(x,y) = d(y,x) because insert/delete are inverses of each other
- $d(x,y) \ge 0$ no notion of negative edits
- d(x,y) < d(x,z) + d(z,y) Triangle inequality: changing x to z and then to y is one way to change x to y.

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits

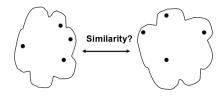




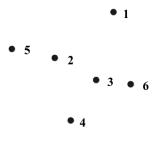
- Initially, each point is a cluster
- Key operation: computation of the proximity of two clusters
- Different approaches to defining the distance between clusters distinguish the different algorithms

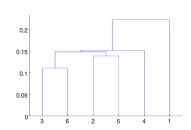
HIE	RARCHICALCLUSTERING (\mathbf{d}, n)	d = distance matrix		
1	Form n clusters, each with 1 element	n points		
2	Construct a graph T by assigning an isolated vertex to each cluster			
3	while there is more than 1 cluster			
4	Find the two closest clusters C_1 and C_2	2		
5	Merge C_1 and C_2 into new cluster C with $ C_1 + C_2 $ elements			
6	Compute distance from C to all other clusters			
7	Add a new vertex C to T and connect to vertices C_1 and C_2			
8	Remove rows and columns of d corresponding to C_1 and C_2			
9	Add a row and column to d for the new	w cluster C		
10	return T			

How to define Inter-cluster similarity?

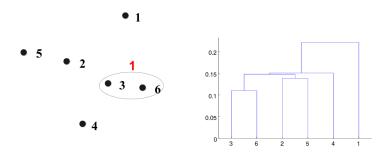


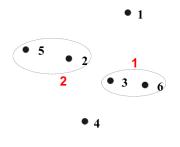
- Minimum, based on the two most similar (closest) points in different clusters: $d_{\min(C^*,C)} = \min_{x \in C^*, y \in C} d(x,y)$
- Maximum, based on the two least similar (most distant) points in different clusters: $d_{\max(C^*,C)} = \max_{x \in C^*, y \in C} d(x,y)$
- Group Average: $d_{\text{avg}(C^*,C)} = \frac{1}{|C^*||C|} \sum_{x \in C^*, y \in C} d(x,y)$

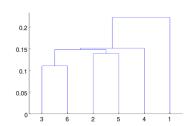


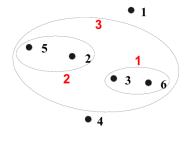


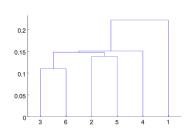
Minimum – Example

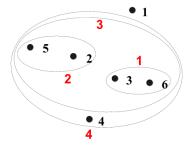


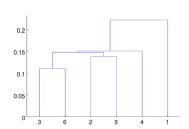


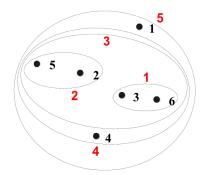


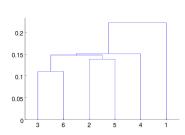










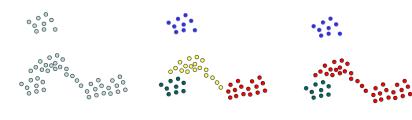


Minimum - Strength

Original Points

Two Clusters

Minimum - Limitations



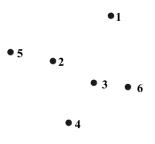
Original Points

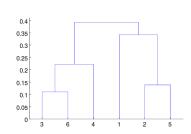
Four clusters

Sensitive to noise and outliers

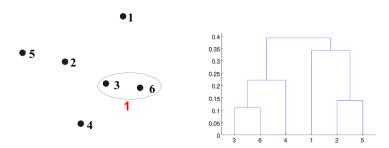
Three clusters:

The yellow points got wrongly merged with the red ones, as opposed to the green one. Maximum – based on the two least similar (most distant) points in the different clusters

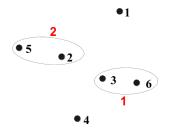


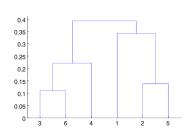


Maximum – based on the two least similar (most distant) points in the different clusters

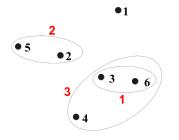


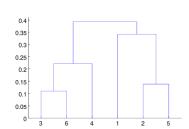
Maximum – based on the two least similar (most distant) points in the different clusters



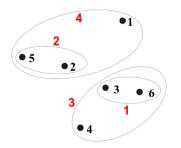


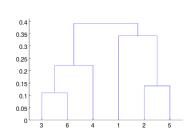
Maximum – based on the two least similar (most distant) points in the different clusters



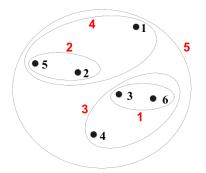


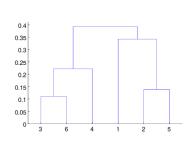
Maximum – based on the two least similar (most distant) points in the different clusters

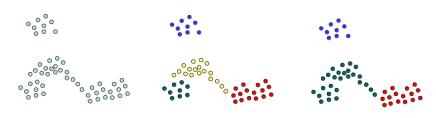




Maximum – based on the two least similar (most distant) points in the different clusters







Original Points

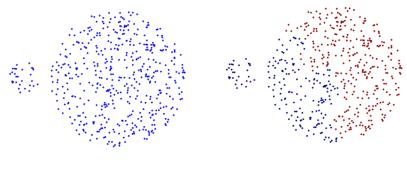
Four clusters

Three clusters:

The yellow points get now merged with the green one.

Less susceptible respect to noise and outliers

Maximum - Limitations



Original Points

Two Clusters

Examining Data

- Developed and published in Applied Statistics by Hartigan and Wong, 1979.
- Many variations have been proposed since then.
- Standard/core function of R, Python, Matlab, . . .
- Assumes Euclidean space/distance

Given a set of n points in m dimensions $\mathcal{V} = \{x_1, \ldots, x_n\}$ and a set of k centers of $\mathcal{X} = \{x_1, \ldots, x_k\}$, the aim of the K-means algorithm is to divide n points into k clusters so that the following within-cluster sum of squares is **minimized**:

$$d(\mathcal{V},\mathcal{X}) = \frac{\sum_{i \in C_k, i' \in \mathcal{X}} \sum_{j=1}^m (x_{ij} - x_{i'j})^2}{n}$$

Examining Data

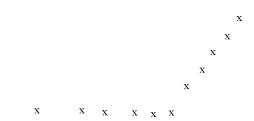
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster

Example: Pick one point at random, then k-1 other points, each as far away as possible from the previous points

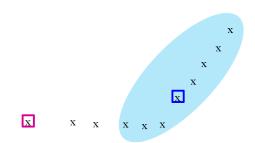
Examining Data

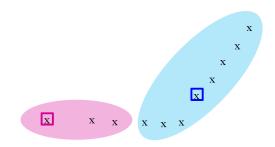
- For each point, place it in the cluster whose current centroid it is nearest
- After all points are assigned, update the locations of centroids of the k clusters
- Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence

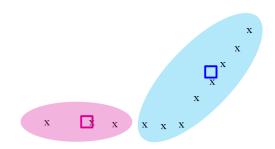
Convergence: Points do not move between clusters and centroids stabilize



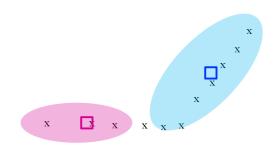
x ... data point ... centroid



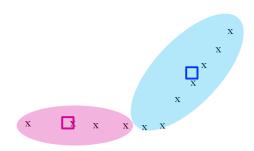


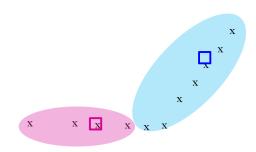


x ... data point ... centroid



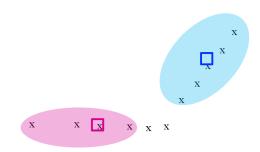
x ... data point ... centroid





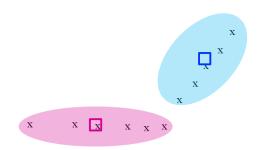
x ... data point ... centroid

Clusters at the end



x ... data point ... centroid

Clusters at the end



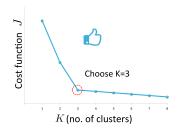
x ... data point ... centroid

Clusters at the end

How to select k?

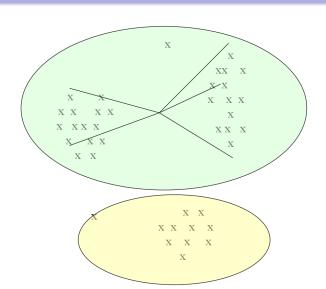
Examining Data

- We use the elbow method to determine the optimum number of clusters.
- Try different k, looking at the change in the average distance to centroid as k increases.
- Average falls rapidly until right k, then changes little.



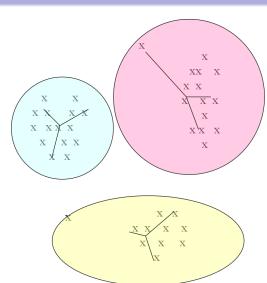
Selection of k – an example

Too few; many long distances to centroid.



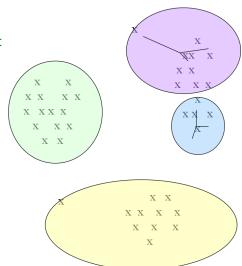
Selection of k – an example

Just right; distances rather short.



Too many;

little improvement in average distance.



K-means in Python

Examining Data

Open this GDrive folder and let us see how to use K-means: https://drive.google.com/ drive/folders/1kZDtH_ 7eoOK3ERXFerUt9J1fYZXfOOkM? usp=sharing

