
www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms

Greedy Algorithms  
 And  

 Genome Rearrangements  

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

US Change Problem 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

US Change Problem 

It is a greedy algorithm:

At every step of iteration, a greedy algorithm tries to find the
best optimal solution (e.g., used the most the coin with the biggest
value)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

US Change Problem 

Does it always find a correct solution?

When c_1 = 25, c_2 = 20, c_3 = 10, c_4 = 5, c_5 = 1,

if M = 40, BetterChange returns i_1 = 1, i_3 = 1, i_4 = 1

We would solve the problem with i_2 = 2…

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

US Change Problem 

But.. how close are we from the optimal solution?

Maybe this algorithm works almost always correctly

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Look and Taste Different  

• Although cabbages and turnips share a
recent common ancestor, they look and taste
different

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Comparing Gene Sequences
Yields No Evolutionary Information

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Almost Identical
mtDNA gene sequences  
• In 1980s Jeffrey Palmer studied evolution of

plant by comparing genomes of the
cabbage and turnip

• 99% similarity between genes
• These surprisingly identical gene

sequences differed in gene order
• This study helped pave the way to

analyzing genome rearrangements in
molecular evolution

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

Before

After

Evolution is manifested as the divergence in
gene order

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Transforming Cabbage into Turnip 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• What are the similarity blocks and how to find
them?

• What is the architecture of the ancestral
genome?

• What is the evolutionary scenario for
transforming one genome into the other?

Unknown ancestor
~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals 
 

• Blocks represent conserved genes.

1 32

4

10

5
6

8
9

7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals 
1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

■ Blocks represent conserved genes.
■ In the course of evolution or in a clinical context, blocks 1,…,10

could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Breakpoints  
1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example 

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break
and
Invert

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architectures: Mouse
vs Human Genome  
• Humans and mice have

similar genomes, but
their genes are ordered
differently

• ~245 rearrangements
• Reversals
• Fusions
• Fissions
• Translocation

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s Syndrome: Mouse Provides
Insight into Human Genetic Disorder  
• Waardenburg’s syndrome is characterized by pigmentary

dysphasia
• Gene implicated in the disease was linked to human

chromosome 2 but it was not clear where exactly it is
located on chromosome 2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s syndrome and splotch mice  
• A breed of mice had similar symptoms

caused by the same type of gene as in
humans

• Scientists succeeded in identifying location
of gene responsible for disorder in mice

• Finding the gene in mice gives clues to
where the same gene is located in humans

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architecture of Human
and Mouse Genomes  
 To locate where

corresponding
gene is in
humans, we
have to analyze
the relative
architecture of
human and
mouse genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example 

 π = 1 2 3 4 5 6 7 8

 ρ(3,5)

 1 2 5 4 3 6 7 8

index of the
array

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example 

 π = 1 2 3 4 5 6 7 8

 ρ(3,5)

 1 2 5 4 3 6 7 8

 ρ(5,6)

 1 2 5 4 6 3 7 8

index of the
array

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Gene Orders 
• Gene order is represented by a

permutation π:
π = π 1 ------ π i-1 π i π i+1 ------ π j-1 π j π j+1 ----- π n

 π 1 ------ π i-1 π j π j-1 ------ π i+1 π i π j+1 ----- πn

● Reversal ρ (i, j) reverses (flips) the
elements from i to j in π

ρ(i,j)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance Problem 
• Goal: Given two permutations, find the shortest

series of reversals that transforms one into another

• Input: Permutations π and σ

• Output: A series of reversals ρ1,…ρt transforming π
into σ, such that t is minimum

• t - reversal distance between π and σ
• d(π, σ) - smallest possible value of t, given π and σ

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals Problem 

• Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

• Input: Permutation π

• Output: A series of reversals ρ1, … ρt transforming π into the identity permutation
such that t is minimum

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: Example 

• t = d(π) - reversal distance of π
• Example :
 π = 3 4 2 1 5 6 7 10 9 8
 4 3 2 1 5 6 7 10 9 8
 4 3 2 1 5 6 7 8 9 10
 1 2 3 4 5 6 7 8 9 10
 So d(π) = 3

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 5 steps 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 4 steps  

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 4 steps  

What is the reversal distance for this
permutation? Can it be sorted in 3 steps?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem 
• The chef is sloppy; he

prepares an unordered stack
of pancakes of different sizes

• The waiter wants to rearrange
them (so that the smallest
winds up on top, and so on,
down to the largest at the
bottom)

• He does it by flipping over
several from the top, repeating
this as many times as
necessary

Christos Papadimitrou and
Bill Gates flip pancakes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem: Formulation  

• Goal: Given a stack of n pancakes, what is
the minimum number of flips to rearrange
them into perfect stack?

• Input: Permutation π
• Output: A series of prefix reversals ρ1, … ρt

transforming π into the identity permutation
such that t is minimum

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem: Greedy Algorithm  

• Greedy approach: 2 prefix reversals at most
to place a pancake in its right position, 2n – 2
steps total at most

• William Gates and Christos Papadimitriou
showed in the mid-1970s that this problem
can be solved by at most 5/3 (n + 1) prefix
reversals

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Greedy Algorithm  

• If sorting permutation π = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

• The length of the already sorted prefix of π is
denoted prefix(π)
• prefix(π) = 3

• This results in an idea for a greedy algorithm:
increase prefix(π) at every step

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• Doing so, π can be sorted

1 2 3 6 4 5

 1 2 3 4 6 5

 1 2 3 4 5 6

• Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy Algorithm: Pseudocode 
SimpleReversalSort(π)
1 for i 🡨 1 to n – 1
2 j 🡨 position of element i in π (i.e., πj = i)
3 if j ≠i
4 π 🡨 π * ρ(i, j)
5 output π
6 if π is the identity permutation
7 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Analyzing SimpleReversalSort  
• SimpleReversalSort does not guarantee the

smallest number of reversals and takes five
steps on π = 6 1 2 3 4 5 :

• Step 1: 1 6 2 3 4 5
• Step 2: 1 2 6 3 4 5
• Step 3: 1 2 3 6 4 5
• Step 4: 1 2 3 4 6 5
• Step 5: 1 2 3 4 5 6

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• But it can be sorted in two steps:
 π = 6 1 2 3 4 5

• Step 1: 5 4 3 2 1 6
• Step 2: 1 2 3 4 5 6

• So, SimpleReversalSort(π) is not optimal

• Optimal algorithms are unknown for many
problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Algorithms 

• These algorithms find approximate solutions
rather than optimal solutions

• The approximation ratio of an algorithm A on
input π is:
 A(π) / OPT(π)
where
 A(π) -solution produced by algorithm A

OPT(π) - optimal solution of the problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance Guarantee  

• Approximation ratio (performance guarantee)
of algorithm A: max approximation ratio of all
inputs of size n
• For algorithm A that minimizes objective

function (minimization algorithm):
• max|π| = n A(π) / OPT(π)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance Guarantee  

• Approximation ratio (performance guarantee)
of algorithm A: max approximation ratio of all
inputs of size n
• For algorithm A that minimizes objective

function (minimization algorithm):
• max|π| = n A(π) / OPT(π)

• For maximization algorithm:
• min|π| = n A(π) / OPT(π)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 π = π1π2π3…πn-1πn
• A pair of elements π i and π i + 1 are adjacent if
 πi+1 = πi + 1
• For example:
 π = 1 9 3 4 7 8 2 6 5
• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

There is a breakpoint between any adjacent
element that are non-consecutive:

 π = 1 9 3 4 7 8 2 6 5

• Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) form
breakpoints of permutation π

• b(π) - # breakpoints in permutation π

Breakpoints: An Example 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Adjacency & Breakpoints 

•An adjacency - a pair of adjacent elements that are consecutive

• A breakpoint - a pair of adjacent elements that are not consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7
adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• We put two elements π 0 =0 and π n + 1=n+1 at
the ends of π

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations 

π = 0 1 9 3 4 7 8 2 6 5 10

π = 1 9 3 4 7 8 2 6 5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

▪ Each reversal eliminates at most 2 breakpoints.

π = 2 3 1 4 6 5
0 2 3 1 4 6 5 7 b(π) = 5
0 1 3 2 4 6 5 7 b(π) = 4
0 1 2 3 4 6 5 7 b(π) = 2
0 1 2 3 4 5 6 7 b(π) = 0

Reversal Distance and Breakpoints  

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

▪ Each reversal eliminates at most 2 breakpoints.
▪ This implies:
 reversal distance ≥ #breakpoints / 2
π = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(π) = 5
0 1 3 2 4 6 5 7 b(π) = 4
0 1 2 3 4 6 5 7 b(π) = 2
0 1 2 3 4 5 6 7 b(π) = 0

Reversal Distance and Breakpoints  

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2 Among all possible reversals, choose

reversal ρ minimizing b(π • ρ)
3 π 🡨 π • ρ(i, j)
4 output π
5 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2 Among all possible reversals, choose

reversal ρ minimizing b(π • ρ)
3 π 🡨 π • ρ(i, j)
4 output π
5 return

Problem: this algorithm may work forever

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Strips 
• Strip: an interval between two consecutive

breakpoints in a permutation
• Decreasing strip: strip of elements in

decreasing order (e.g. 6 5 and 3 2).
• Increasing strip: strip of elements in increasing

order (e.g. 7 8)

 0 1 9 4 3 7 8 2 5 6 10

• A single-element strip can be declared either increasing or
decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of Breakpoints  

Theorem 1:
 If permutation π contains at least one

decreasing strip, then there exists a
reversal ρ which decreases the number of
breakpoints (i.e. b(π • ρ) < b(π))

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider 
• For π = 1 4 6 5 7 8 3 2
 0 1 4 6 5 7 8 3 2 9 b(π) = 5

• Choose decreasing strip with the smallest
element k in π (k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)  
• For π = 1 4 6 5 7 8 3 2
 0 1 4 6 5 7 8 3 2 9 b(π) = 5

• Choose decreasing strip with the smallest
element k in π (k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)  
• For π = 1 4 6 5 7 8 3 2
 0 1 4 6 5 7 8 3 2 9 b(π) = 5

• Choose decreasing strip with the smallest
element k in π (k = 2 in this case)

• Find k – 1 in the permutation

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)  
• For π = 1 4 6 5 7 8 3 2
 0 1 4 6 5 7 8 3 2 9 b(π) = 5

• Choose decreasing strip with the smallest
element k in π (k = 2 in this case)

• Find k – 1 in the permutation
• Reverse the segment between k and k-1:
• 0 1 4 6 5 7 8 3 2 9 b(π) = 5

• 0 1 2 3 8 7 5 6 4 9 b(π) = 4

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of
Breakpoints Again 
 

• If there is no decreasing strip, there may be
no reversal ρ that reduces the number of
breakpoints (i.e. b(π • ρ) ≥ b(π) for any
reversal ρ).

• By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)  
• There are no decreasing strips in π, for:

 π = 0 1 2 5 6 7 3 4 8 b(π) = 3
 π • ρ(6,7) = 0 1 2 5 6 7 4 3 8 b(π) = 3

✔ ρ(6,7) does not change the # of breakpoints
✔ ρ(6,7) creates a decreasing strip thus

guaranteeing that the next step will decrease
the # of breakpoints.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

ImprovedBreakpointReversalSort  
ImprovedBreakpointReversalSort(π)
1 while b(π) > 0
2 if π has a decreasing strip
3 Among all possible reversals, choose reversal ρ
 that minimizes b(π • ρ)
4 else
5 Choose a reversal ρ that flips an increasing strip in π
6 π 🡨 π • ρ
7 output π
8 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of at most 4
• It eliminates at least one breakpoint in every two

steps; at most 2b(π) steps
• Approximation ratio: 2b(π) / d(π)
• Optimal algorithm eliminates at most 2 breakpoints

in every step: d(π) ≥ b(π) / 2
• Performance guarantee:

• (2b(π) / d(π)) ≥ [2b(π) / (b(π) / 2)] = 4

ImprovedBreakpointReversalSort:
Performance Guarantee  

www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms

When should we use Greedy
Algorithms? 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

When should we use Greedy Algorithms? 

• Simple and easy to understand
• Fast and efficient (compared to other techniques)
• Provides a good enough solution (we have how good

today for one problem)
• Can be used as a building block for other algorithms: it

can be used as a starting point for developing more complex
algorithms.

• Useful for a variety of problems: optimization problems,
including knapsack problems, scheduling problems, and
routing problems

