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US Change Problem 

It is a greedy algorithm:

At every step of iteration, a greedy algorithm tries to find the 
best optimal solution (e.g., used the most the coin with the biggest 
value)
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US Change Problem 

Does it always find a correct solution?

When c_1 = 25, c_2 = 20, c_3 = 10, c_4 = 5, c_5 = 1,

if M = 40, BetterChange returns i_1 = 1, i_3 = 1, i_4 = 1

We would solve the problem with i_2 = 2…
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US Change Problem 

But.. how close are we from the optimal solution? 

Maybe this algorithm works almost always correctly
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Turnip vs Cabbage: Look and Taste Different  

• Although cabbages and turnips share a 
recent common ancestor, they look and taste 
different
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Turnip vs Cabbage: Comparing Gene Sequences 
Yields No Evolutionary Information
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Turnip vs Cabbage: Almost Identical 
mtDNA gene sequences  
• In 1980s Jeffrey Palmer studied evolution of 

plant by comparing genomes of the 
cabbage and turnip

• 99% similarity between genes
• These surprisingly identical gene 

sequences differed in gene order
• This study helped pave the way to 

analyzing genome rearrangements in 
molecular evolution
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Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:
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Turnip vs Cabbage: Different mtDNA Gene Order  

• Gene order comparison:

Before

After

Evolution is manifested as the divergence in 
gene order
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Transforming Cabbage into Turnip 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• What are the similarity blocks and how to find 
them?

• What is the architecture of the ancestral 
genome?

• What is the evolutionary scenario for 
transforming one genome into the other?

Unknown ancestor
~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements 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Reversals 
 

• Blocks represent conserved genes.

1 32

4

10

5
6

8
9

7
1, 2, 3,  4,  5,  6,   7,  8, 9, 10
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Reversals 
1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

■ Blocks represent conserved genes.
■ In the course of evolution or in a clinical context, blocks 1,…,10 

could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.
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Reversals and Breakpoints  
1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).
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Reversals: Example 

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break 
and 
Invert
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Comparative Genomic Architectures: Mouse 
vs Human Genome  
• Humans and mice have 

similar genomes, but 
their genes are ordered 
differently

• ~245 rearrangements
• Reversals
• Fusions
• Fissions
• Translocation
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Waardenburg’s Syndrome: Mouse Provides 
Insight into Human Genetic Disorder  
• Waardenburg’s syndrome is characterized by pigmentary 

dysphasia
• Gene implicated in the disease was linked to human 

chromosome 2 but it was not clear where exactly it is 
located on chromosome 2 
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Waardenburg’s syndrome and splotch mice  
• A breed of mice had similar symptoms 

caused by the same type of gene as in 
humans

• Scientists succeeded in identifying location 
of gene responsible for disorder in mice

• Finding the gene in mice gives clues to 
where the same gene is located in humans
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Comparative Genomic Architecture of Human 
and Mouse Genomes  
   To locate where 

corresponding 
gene is in 
humans, we 
have to analyze 
the relative 
architecture of  
human and 
mouse genomes
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Reversals: Example 

          π = 1 2 3 4 5 6 7 8                 
                                                                             
          ρ(3,5)

                  1 2 5 4 3 6 7 8

         
                  

index of the 
array
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Reversals: Example 

          π = 1 2 3 4 5 6 7 8                 
                                                                

             
          ρ(3,5)

                  1 2 5 4 3 6 7 8

         ρ(5,6)

                  1 2 5 4 6 3 7 8

index of the 
array
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Reversals and Gene Orders 
• Gene order is represented by a 

permutation π: 
π   = π 1 ------ π i-1 π i π i+1 ------  π j-1 π j π j+1 ----- π n

                               
        π 1 ------ π i-1 π j π j-1 ------ π i+1 π i π j+1 ----- πn

● Reversal ρ ( i, j ) reverses (flips) the 
elements from i to j in π  

ρ(i,j)
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Reversal Distance Problem 
• Goal: Given two permutations, find the shortest 

series of reversals that transforms one into another

• Input: Permutations π and σ

• Output: A series of reversals ρ1,…ρt transforming π 
into σ, such that t is minimum

• t - reversal distance between π and σ
• d(π, σ) - smallest possible value of t, given π and σ
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Sorting By Reversals Problem 

• Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n ) 

• Input: Permutation π

• Output: A series of reversals ρ1, … ρt transforming π into the identity permutation 
such that t is minimum
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Sorting By Reversals: Example 

• t = d(π ) - reversal distance of π
• Example :
                     π    =  3  4  2  1  5  6  7  10  9  8
                               4  3  2  1 5   6  7  10  9  8
                               4  3  2  1  5  6  7    8  9 10
                               1  2  3  4  5  6  7    8  9 10
        So d(π ) = 3
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Sorting by reversals: 5 steps 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Sorting by reversals: 4 steps  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Sorting by reversals: 4 steps  

What is the reversal distance for this 
permutation? Can it be sorted in 3 steps? 
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Pancake Flipping Problem 
• The chef is sloppy; he 

prepares an unordered stack 
of pancakes of different sizes

• The waiter wants to rearrange 
them (so that the smallest 
winds up on top, and so on, 
down to the largest at the 
bottom)

• He does it by flipping over 
several from the top, repeating 
this as many times as 
necessary

Christos Papadimitrou and 
Bill Gates flip pancakes
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Pancake Flipping Problem: Formulation  

• Goal: Given a stack of n pancakes, what is 
the minimum number of flips to rearrange 
them into perfect stack?

• Input: Permutation π
• Output: A series of prefix reversals ρ1, … ρt 

transforming π into the identity permutation 
such that t is minimum
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Pancake Flipping Problem: Greedy Algorithm  

• Greedy approach: 2 prefix reversals at most 
to place a pancake in its right position, 2n – 2 
steps total at most

• William Gates and Christos Papadimitriou 
showed in the mid-1970s that this problem 
can be solved by at most 5/3 (n + 1) prefix 
reversals
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Sorting By Reversals: A Greedy Algorithm  

• If sorting permutation π = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them. 

• The length of the already sorted prefix of π is 
denoted prefix(π)
•  prefix(π) = 3

• This results in an idea for a greedy algorithm: 
increase prefix(π) at every step
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• Doing so, π  can be sorted
    

1 2 3 6 4 5 

                       1 2 3 4 6 5
                       
                       1 2 3 4 5 6

• Number of steps to sort permutation of 
length n is at most (n – 1)

Greedy Algorithm: An Example
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Greedy Algorithm: Pseudocode 
SimpleReversalSort(π)
1 for  i 🡨 1 to n – 1
2    j 🡨 position of element i in π (i.e., πj = i)
3    if  j ≠i
4       π 🡨 π * ρ(i, j)
5       output π
6    if π is the identity permutation 
7      return



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Analyzing SimpleReversalSort  
• SimpleReversalSort does not guarantee the 

smallest number of reversals and takes five 
steps on  π = 6 1 2 3 4 5 :

• Step 1: 1 6 2 3 4 5
• Step 2: 1 2 6 3 4 5 
• Step 3: 1 2 3 6 4 5
• Step 4: 1 2 3 4 6 5
• Step 5: 1 2 3 4 5 6
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• But it can be sorted in two steps:
  π    =  6 1 2 3 4 5   

• Step 1:  5 4 3 2 1 6     
• Step 2:  1 2 3 4 5 6

• So, SimpleReversalSort(π) is not optimal

• Optimal algorithms are unknown for many 
problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d)
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Approximation Algorithms 

• These algorithms find approximate solutions 
rather than optimal solutions

• The approximation ratio of an algorithm A on 
input π  is:
                    A(π) / OPT(π)
where 
        A(π) -solution produced by algorithm A                 

OPT(π) - optimal solution of the problem
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Approximation Ratio/Performance Guarantee  

• Approximation ratio (performance guarantee) 
of algorithm A: max approximation ratio of all 
inputs of size n
• For algorithm A that minimizes objective 

function (minimization algorithm):
• max|π| = n A(π) / OPT(π)



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance Guarantee  

• Approximation ratio (performance guarantee) 
of algorithm A: max approximation ratio of all 
inputs of size n
• For algorithm A that minimizes objective 

function (minimization algorithm):
• max|π| = n A(π) / OPT(π)

• For maximization algorithm:
• min|π| = n A(π) / OPT(π)
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         π = π1π2π3…πn-1πn
• A pair of elements π i and π i + 1 are adjacent if 
                          πi+1 = πi  + 1
• For example:
        π = 1  9  3  4  7  8  2  6  5
• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints 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There is a breakpoint between any adjacent 
element that are non-consecutive:

                π = 1  9  3  4  7  8  2  6  5

• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) form 
breakpoints of permutation π 

• b(π) - # breakpoints in permutation π
   

Breakpoints: An Example 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Adjacency & Breakpoints 

•An adjacency - a pair of adjacent elements that are consecutive

• A breakpoint - a pair of adjacent elements that are not consecutive

π = 5  6  2  1  3  4

0  5  6  2  1  3  4  7
adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7
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• We put two elements π 0 =0 and π n + 1=n+1 at 
the ends of π

Example: 

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations 

π = 0 1  9  3  4  7  8  2  6  5 10

π = 1  9  3  4  7  8  2  6  5
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▪ Each reversal eliminates at most 2 breakpoints.

π  = 2  3  1  4  6  5
0  2  3  1  4  6  5  7       b(π) = 5
0  1  3  2  4  6  5  7            b(π) = 4
0  1  2  3  4  6  5  7     b(π) = 2
0  1  2  3  4  5  6  7                b(π) = 0

Reversal Distance and Breakpoints  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▪ Each reversal eliminates at most 2 breakpoints.
▪ This implies: 
      reversal distance  ≥  #breakpoints / 2
π  = 2  3  1  4  6  5

0  2  3  1  4  6  5  7       b(π) = 5
0  1  3  2  4  6  5  7            b(π) = 4
0  1  2  3  4  6  5  7     b(π) = 2
0  1  2  3  4  5  6  7                b(π) = 0

Reversal Distance and Breakpoints  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Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2  Among all possible reversals,   choose 

reversal ρ minimizing b(π • ρ)
3  π 🡨 π • ρ(i, j)
4  output π
5 return
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Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2  Among all possible reversals,   choose 

reversal ρ minimizing b(π • ρ)
3  π 🡨 π • ρ(i, j)
4  output π
5 return

Problem: this algorithm may work forever
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Strips 
• Strip: an interval between two consecutive 

breakpoints in a permutation 
• Decreasing strip: strip of elements in 

decreasing order (e.g. 6 5 and 3 2 ).
• Increasing strip: strip of elements in increasing 

order (e.g. 7 8)
               
                 0  1  9  4  3  7  8  2  5  6 10 

• A single-element strip can be declared either increasing or 
decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1
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Reducing the Number of Breakpoints  

Theorem 1:
   If permutation π contains at least one 

decreasing strip, then there exists a 
reversal ρ  which decreases the number of 
breakpoints (i.e. b(π • ρ) < b(π) )
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Things To Consider 
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 
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Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 
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Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 

• Find k – 1 in the permutation
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Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 

• Find k – 1 in the permutation
• Reverse the segment between k and k-1:
• 0  1  4  6  5  7  8  3  2  9 b(π) = 5

• 0  1  2  3  8  7  5  6  4  9 b(π) = 4
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Reducing the Number of 
Breakpoints Again 
 

• If there is no decreasing strip, there may be 
no reversal ρ  that reduces the number of 
breakpoints (i.e. b(π • ρ)  ≥ b(π) for any  
reversal ρ). 

• By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1).
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Things To Consider (cont’d)  
• There are no decreasing strips in π, for:

            π  = 0  1  2  5  6  7  3  4  8    b(π) = 3
   π • ρ(6,7) = 0  1  2  5  6  7  4  3  8    b(π) = 3 

✔ ρ(6,7) does not change the # of breakpoints
✔ ρ(6,7) creates a decreasing strip thus 

guaranteeing that the next step will decrease 
the # of breakpoints.
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ImprovedBreakpointReversalSort  
ImprovedBreakpointReversalSort(π)
1 while b(π) > 0
2     if π has a decreasing strip
3    Among all possible reversals, choose reversal ρ 
                              that minimizes b(π • ρ)
4     else
5        Choose a reversal ρ that flips an increasing strip in π
6                  π 🡨 π • ρ
7      output π
8  return
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• ImprovedBreakPointReversalSort is an approximation 
algorithm with a performance guarantee of at most 4
• It eliminates at least one breakpoint in every two 

steps;  at most 2b(π) steps
• Approximation ratio: 2b(π)  / d(π)
• Optimal algorithm eliminates at most 2 breakpoints 

in every step: d(π) ≥ b(π) / 2
• Performance guarantee:

• ( 2b(π) / d(π) ) ≥ [ 2b(π) / (b(π) / 2) ] =  4

ImprovedBreakpointReversalSort: 
Performance Guarantee  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When should we use Greedy 
Algorithms? 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When should we use Greedy Algorithms? 

• Simple and easy to understand
• Fast and efficient (compared to other techniques)
• Provides a good enough solution (we have how good 

today for one problem)
• Can be used as a building block for other algorithms: it 

can be used as a starting point for developing more complex 
algorithms.

• Useful for a variety of problems: optimization problems, 
including knapsack problems, scheduling problems, and 
routing problems


