
Motivations Course Topics

Principles of Computer Science II
Computational Thinking

Marco Zecchini

Sapienza University of Rome

Lecture 1

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 1 / 33

Motivations Course Topics

Introduction

This is me!

Website

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 2 / 33

https://marcozecchini.github.io/Teaching/PCS-II---Bioinformatics/PCS-II---Homepage

Motivations Course Topics

Introduction

Do we really need this course?

Yes!

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 3 / 33

Motivations Course Topics

Introduction

Do we really need this course?

Yes!

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 3 / 33

Motivations Course Topics

Introduction

Do we really need this course?

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 4 / 33

Motivations Course Topics

Introduction

Do we really need this course?

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 4 / 33

Motivations Course Topics

Introduction

In PCSI

Introduction to Programming and Computer Architecture;

Introduction to Python. Installation and usage;

Get and give information. Input/output from/to the user;

Standard Python data structures: sequences, iterations, slices,
lists, strings, dictionaries;

Conditions. if, else, elif;

Organizing the code. Functions, objects, classes, files;

Python and multimedia. Data structures for images.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 5 / 33

Motivations Course Topics

Introduction

In PCSI

Function to filter list items based on their length

def filter_items_by_length(items , min_length):

Filter items with length greater than or equal

to min_length

return [item for item in items if len(item) >=

min_length]

Create a list of items

lst_listings = [’Item␣1’, ’Longer␣Item␣2’, ’Item␣3’, ’

Very␣Long␣Item␣4’, ’Item␣5’]

min_length = 10

filtered_items = filter_items_by_length(lst_listings ,

min_length)

for item in filtered_items:

print(item)

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 6 / 33

Motivations Course Topics

Introduction

In PCSI

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 7 / 33

Motivations Course Topics

Introduction

What about algorithms?

Problem: We want to sort a vector of elements

Instance of the problem: We want to sort this specific
vector: 8 3 5 4 6

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 8 / 33

Motivations Course Topics

Introduction

What about algorithms?

Problem: We want to sort a vector of elements

Instance of the problem: We want to sort this specific
vector: 8 3 5 4 6

Application in Bioinformatics: Sequence Database Search:
Sorted DNA sequences can be used for faster searching in
large sequence databases, such as BLAST, which relies on
efficient sequence comparison algorithms

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 8 / 33

Motivations Course Topics

Introduction

First algorithm: Selection Sort
Sorting a vector: [8, 3, 5, 4, 6]

Alg. Key intuition: Always Look for the smallest next minimum.

Initial Vector: 8 3 5 4 6

Step 1: Find the minimum and swap with the first
element [3]
3 8 5 4 6

Step 2: Find the next minimum [4] and swap with
second element
3 4 5 8 6

Step 3: Find the next minimum [5] (already in place)
3 4 5 8 6

Step 4: Find the next minimum [6] and swap with 4th
element
3 4 5 6 8

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 9 / 33

Motivations Course Topics

Introduction

First Example: Insertion Sort
Sorting a vector: [8, 3, 5, 4, 6]

Alg. Key intuition: Divide the problem into smaller problem.

Initial Vector: 8 3 5 4 6

Step 1: Insert 3 into the sorted portion [8]
3 8 5 4 6

Step 2: Insert 5 into the sorted portion [3, 8]
3 5 8 4 6

Step 3: Insert 4 into the sorted portion [3, 5, 8]
3 4 5 8 6

Step 4: Insert 6 into the sorted portion [3, 4, 5, 8]
3 4 5 6 8

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 10 / 33

Motivations Course Topics

Introduction

Comparison of the two approaches

Insertion Sort:
Builds the sorted list one element at a time by inserting each
new element into its correct position.
Performs fewer comparisons when the list is nearly sorted.
Easier to implement and understand for small lists.

Selection Sort:
Repeatedly selects the smallest (or largest) element from the
unsorted part and swaps it with the first unsorted element.
Always performs the same number of comparisons, regardless
of how sorted the list is.
Simpler in terms of swapping, but may involve more overall
data movement.

Key Differences:
Insertion Sort tends to be faster when the list is almost
sorted.
Selection Sort always performs the same number of
comparisons, but it swaps elements more frequently.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 11 / 33

Motivations Course Topics

Introduction

Other Example

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.3, the US changing problem.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 12 / 33

Motivations Course Topics

Introduction

So, why do need this course?

We need this course to learn how to recognize different computer
science/bioinformatics problems, solving them with an efficient
algorithms and, finally, implementing these algorithms in practice.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 13 / 33

Motivations Course Topics

Introduction

Computational Thinking

Computational Thinking allows us to understand what needs
to be solved.
Four key techniques (cornerstones) to computational thinking:

1 Decomposition – breaking down a complex problem or system
into smaller, more manageable parts

2 Pattern Recognition – looking for similarities among and
within problems

3 Abstraction – focusing on the important information only,
ignoring irrelevant detail

4 Algorithms – developing a step-by-step solution to the
problem, or the rules to follow to solve the problem

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 14 / 33

Motivations Course Topics

Introduction

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 15 / 33

Motivations Course Topics

Introduction

Computational Thinking vs Programming

Thinking computationally is not programming.

. . . not even thinking as a computer.
Programming tells computer what to do / how to do it.
Computational thinking enables us to understand what we
need to tell to computers.
. . . what to program.

Examples:

Explain to a friend how to drive to your house
Organize a party at the park
Prepare your luggage
Teach a kid addition/subtraction
. . .

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 16 / 33

Motivations Course Topics

Introduction

Decomposition

Turn a complex problem into one we can easily understand.

. . . probably you already do every day.
The smaller parts are easier to solve.
. . . we already know/have the solutions.

Examples:

Brushing our teeth
Which brush? How long? How hard? What toothpaste?
Solving a crime
What crime? When? Where? Evidence? Witnesses? Recent
similar crimes?
. . .

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 17 / 33

Motivations Course Topics

Introduction

Pattern Recognition

We often find patterns among the smaller problems we examine.

The patterns are similarities or characteristics that some of
the problems share.

Example: Cats

All cats share common characteristics.
they all have eyes, tails and fur.
Once we know how to describe one cat we can describe
others, simply by following this pattern.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 18 / 33

Motivations Course Topics

Introduction

Abstraction

Hiding irrelevant details to focus on the essential
features needed to understand and use a thing

A compression process – multiple different pieces of
constituent data to a single piece of abstract data.
e.g., “cat”
Ambiguity – multiple different references.
e.g., “happiness”, “architecture”
Simplification – no loss of generality
e.g., “red” - many different things can be red

Thought process wherein ideas are distanced from
objects

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 19 / 33

Motivations Course Topics

Introduction

Abstraction Example: Car vs Car Breaks

Do we know how car breaks work?
Do we know how to use them?

Filter out (ignore) the characteristics that we don’t need in
order to concentrate on those that we do.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 20 / 33

Motivations Course Topics

Introduction

Algorithms

A plan, a set of step-by-step instructions to solve a problem.

In an algorithm, each instruction is identified and the order in
which they should be carried out is planned.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 21 / 33

Motivations Course Topics

Introduction

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 22 / 33

Motivations Course Topics

Introduction

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 23 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s skill set

Prof. Juho Rousu, 2006 and Prof. I. Chatzigiannakis (for me!)

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 24 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s skill set

Statistics, data analysis methods
Lots of data
High noise levels, missing values
#attributes ≫ #data points

Programming languages
Scripting languages: Python, Perl, Ruby, . . .
Extensive use of text file formats: need parsers
Integration of both data and tools

Data structures, databases
New measurement techniques produce huge quantities of
biological data.

Scientific computation packages
R, Matlab/Octave, . . .

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 25 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 26 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 26 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 26 / 33

Motivations Course Topics

Skills & Competences

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 26 / 33

Motivations Course Topics

Axis 1: Python

1 Integrated Development Environment
2 Data Structures
3 Data Sets
4 Data Formats
5 Data Storage
6 Visualization

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 27 / 33

Motivations Course Topics

Axis 2: Algorithms

1 Complexity Analysis
2 Sorting
3 Exhaustive Search
4 Branch-and-Bound Algorithms
5 Greedy Algorithms
6 Divide-and-Conquer Algorithms
7 Data Mining Algorithms

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 28 / 33

Motivations Course Topics

Axis 3: Cloud Computing

1 Cloud Storage

2 Databases

3 Elastic Compute

4 Handling Large Data Sets

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 29 / 33

Motivations Course Topics

Literature

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

JOHN M. ZELLE: Python Programming: An Introduction to
Computer Science (Third Edition)

Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck,
Michiel de Hoon, Peter Cock, Tiago Antao, Eric Talevich, Bartek
Wilczyński: Biopython Tutorial and Cookbook

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 30 / 33

Motivations Course Topics

(Tentative) Lecture logistics

Thursday, 2pm - 4pm: Theoretical lecture

Monday, 4pm - 7pm: Hands-on lecture

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 31 / 33

Motivations Course Topics

Evaluation and exams

A total of five assignments will be handed over during the
semester. These assignments are done by each student individually.
The course will be evaluated based on the performance of (a) the
individual assignments, (b) the active participation of the student
during the semester and (c) an oral interview.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 32 / 33

Motivations Course Topics

Other information

Website

Google Classroom

email: zecchini@diag.uniroma1.it

Telegram group to communicate in Google Classroom.

M. Zecchini Principles of Computer Science II: Computational Thinking Lecture 1 33 / 33

https://marcozecchini.github.io/Teaching/PCS-II---Bioinformatics/PCS-II---Homepage
https://classroom.google.com/c/NzE4Mzc2NTI0NzE2?cjc=qazymsj

	Motivations
	Introduction
	Skills & Competences

	Course Topics
	

