Graph Theory 0000 SP: Breadth-first Search

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths 0000

Principles of Computer Science II Introduction to Graph Theory

Marco Zecchini

Sapienza University of Rome

Lecture 7

M. Zecchini

Principles of Computer Science II: Introduction to Graph Theory

Lecture 7 1 / 28

Graph Theory ●000	SP: Breadth-first Search	SP: Dijkstra's Algorithm 000000000	Eulerian Paths 00000	Hamiltonian Paths 0000
Basic Definitions				
Graph De	finition			

- We denote a graph by G = G(V, E), where
 - V represents the set of vertices

$$V = \{a, b, c, d, e\}$$

• *E* represents the set of edges

$$E = \{(a, b), (a, c), (b, c), (b, d), (c, d), (c, e)\}$$

Graph Theory 0●00	SP: Breadth-first Search	SP: Dijkstra's Algorithm 00000000	Eulerian Paths 00000	Hamiltonian Paths 0000
Basic Definitions				
Rasic De	finitions			

- We denote |V| = n the number of vertices.
- We denote |E| = m the number of edges.
- Two vertices u, v are called adjacent or neighboring vertices if there exists an edge e = (u, v).
- We say that edge *e* is incident to vertices *u* and *v*.
- We say that vertices *u* and *v* are incident to edge *e*.
- A loop is an edge from a node to itself: (u, u).

Graph Theory 00●0	SP: Breadth-first Search	SP: Dijkstra's Algorithm 000000000	Eulerian Paths 00000	Hamiltonian Paths 0000
Basic Definitions				
Degree of	the Vertex			

- The number of edges incident to a given vertex v is called the degree of the vertex and is denoted d(v).
- For every graph G = G(V, E),

$$\sum_{u\in V} d(u) = 2 \cdot |m|$$

 Notice that an edge connecting vertices v and w is counted in the sum twice: first in the term d(v) and again in the term d(w).

Graph Theory 000●	SP: Breadth-first Search	SP: Dijkstra's Algorithm 00000000	Eulerian Paths 00000	Hamiltonian Paths 0000
Basic Definitions				
Subgraph	S			

- A subgraph G' of G consists of a subset of V and E. That is, G' = (V', E') where V' ⊂ V and E' ⊂ E.
- A spanning subgraph contains all the nodes of the original graph.

aph Theory	SP: Breadth-first Search ●0000	SP: Dijkstra's Algorithm	Eulerian Paths 00000	Hamiltonian Paths 0000

Paths

- A path is a sequence of vertices and edges of a graph Vertices cannot be repeated. Edges cannot be repeated.
- A path of length k is a sequence of vertices (v₀, v₁,..., v_k), where we have (v_i, v_{i+1}) ∈ E.
- If $v_i \neq v_j$ for all $0 \le i < j \le k$ we call the path simple.
- If $v_0 = v_k$ for all $0 \le i < j \le k$ and $v_0 = v_k$ the path is a cycle.
- A path from vertex u to vertex v is a path (v₀, v₁,..., v_k) such that v₀ = u and v_k = v.

aph Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm	Eulerian Paths	Hamiltonian Paths
	○●○○○	00000000	00000	0000

Shortest Paths

- A shortest path between vertices *u* and *v* is a path from *u* to *v* of minimum length.
- The distance d(u, v) between vertices u and v is the length of a shortest path between u and v.
- If u and v are in different connected component then $d(u, v) = \infty$.

raph Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm	Eulerian Paths	Hamiltonian Paths
000	00●00	00000000	00000	

Graph Diameter

• The diameter *D* of a connected graph is the maximum (over all pairs of vertices in the graph) distance.

$$D = \max_{(u,v): u, v \text{ connected}} d(u, v)$$

• If a graph is disconnected then we define the diameter to be the maximum of the diameters of the connected components.

- Given a graph G(V, E) and a distinguished source vertex u,
- breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from *u*.
- It computes the distance from *u* to each reachable vertex.
- It computes a spanning subgraph of *G*, the "breadth-first tree", with root *u* that contains all reachable vertices.
- For any vertex v reachable from u, the path in the breadth-first tree from u to v corresponds to a "shortest path" from u to v in G.

SP: Dijkstra's Algorithm 000000000 Eulerian Paths

Hamiltonian Paths 0000

Example of Execution of Breadth-First Search Algorithm

Initial Graph

The graph contains 9 vertices, 14 edges

- Vertex $\mathbf{1}$ is the source node.
- Vertex 1 marked as discovered.

Vertices **2,5** marked as frontier.

All other vertices are not discovered.

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths 0000

Example of Execution of Breadth-First Search Algorithm

$\mathbf{1}^{st}$ Round

Vertex 1 examines adjacent vertices. Vertice 2,5 marked as discovered. Vertices 3,4,7,8,9 marked as the frontier.

SP: Dijkstra's Algorithm 000000000 Eulerian Paths

Hamiltonian Paths 0000

Example of Execution of Breadth-First Search Algorithm

2nd Round

Vertices **3,4,7,8,9** marked as discovered.

Vertex **6** marked as frontier.

Graph Theory 0000 SP: Breadth-first Search 0000● SP: Dijkstra's Algorithm 000000000 Eulerian Paths

Hamiltonian Paths 0000

Example of Execution of Breadth-First Search Algorithm

3rd Round

All vertices are discovered.

SP: Dijkstra's Algorithm 000000000 Eulerian Paths

Hamiltonian Paths 0000

Example of Execution of Breadth-First Search Algorithm

Final Graph Breadth-first search tree constructed.

Dijkstra's Algorithm

Goal: Find the shortest paths from a source node to all other nodes in a graph with non-negative weights. **Input:** A weighted graph G = (V, E) and a source node *s*. **Output:** The minimum distances from the source node to every other node and predecessors to reconstruct the paths.

Main Idea: Iteratively expand nodes based on the currently known minimum distance.

SP: Dijkstra's Algorithm 0●0000000 Eulerian Paths

Hamiltonian Paths 0000

Dijkstra's Algorithm: Initialization

Initialization:

All nodes set to ∞ , except the source (A = 0).

Initial Distances:

Node	Distance	Predecessor
А	0	-
В	∞	-
С	∞	-
D	∞	-
Е	∞	-

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths 0000

Round 1: Process Node A

Current Node: A (distance 0). Update distances for neighbors B and C: d[B] = 4, d[C] = 2

Predecessors:

$$pred[B] = A, pred[C] = A$$

Node	Distance	Predecessor
А	0	-
В	4	А
С	2	А
D	∞	-
Е	∞	-

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths 0000

Round 2: Process Node C

Current Node: *C* (distance 2). Update distances for neighbors *D* and *E*:

d[D] = 3, d[E] = 10Predecessors: pred[D] = C, pred[E] = C

Node	Distance	Predecessor
A	0	-
В	4	A
С	2	А
D	3	С
Е	10	С

SP: Dijkstra's Algorithm 0000●0000 Eulerian Paths

Hamiltonian Paths 0000

Round 3: Process Node D

Current Node: *D* (distance 3). Update distance for neighbor *E*:

d[E] = 6 (updated via D) Predecessor: pred[E] = D

Node	Distance	Predecessor
А	0	-
В	4	А
С	2	A
D	3	С
Е	6	D

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths

Round 4: Process Node B

Current Node: *B* (distance 4). No updates are made, as all reachable nodes have shorter paths.

Node	Distance	Predecessor
A	0	-
В	4	А
С	2	А
D	3	С
Е	6	D

Graph Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm	Eulerian Paths	Hamiltonian Paths
0000		000000●00	00000	0000
Final Res	sults			

Shortest Paths and Final Distances:

Node	Distance	Predecessor
А	0	-
В	4	А
С	2	А
D	3	С
Е	6	D

Graph Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm	Eulerian Paths	Hamiltonian Paths
0000		0000000€0	00000	0000

Pseudocode

- Initialize the distance of all nodes to ∞, except the source node s (set d[s] = 0).
- 2 Mark all nodes as unvisited.
- Seperat until all nodes have been visited:
 - Select the unvisited node *u* with the smallest known distance.
 - Mark *u* as visited.
 - For each unvisited neighbor v of u:
 - Calculate an alternative distance alt = d[u] + w(u, v).
 - If alt < d[v], update d[v] and set pred[v] = u.

Graph Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm	Eulerian Paths	Hamiltonian Paths
0000		00000000●	00000	0000
Other SP	algorithms			

There are other algorithms to compute the shortest path in a graph (e.g., Depth First Search).

0000		00000	0000

Bridges of Königsberg

Euler was interested in whether he could arrange a tour of the city in such a way that the tour visits each bridge exactly once

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths

Bridge Problem

Find a tour through a city (located on n islands connected by m bridges) that starts on one of the islands, visits every bridge exactly once, and returns to the originating island.

Input: A map of the city with n islands and m bridges.

Output: A tour through the city that visits every bridge exactly once and returns to the starting island.

Graph Theory 0000 SP: Breadth-first Search

SP: Dijkstra's Algorithm 000000000 Eulerian Paths

Hamiltonian Paths

Transformation of the Map into a Graph

- Every island corresponds to a vertex.
- Every bridge corresponds to an edge.

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths

Eulerian Cycle Problem

Find a cycle in a graph that visits every edge exactly once.

Input: A graph G.

Output: A cycle in *G* that visits every edge exactly once.

oh Theory	SP: Breadth-first Search	SP: Dijkstra's Algorithm 000000000	Eulerian Paths 00000	Hamiltonian Paths ●000

Hamilton's Game

- Sir William Hamilton invented a game corresponding to a graph whose twenty vertices were labeled with the names of twenty famous cities.
- The goal is to visit all twenty cities in such a way that every city is visited exactly once before returning back to the city where the tour started.

SP: Dijkstra's Algorithm

Eulerian Paths

Hamiltonian Paths

Hamiltonian Cycle Problem

Find a cycle in a graph that visits every vertex exactly once.

Input: A graph G.

Output: A cycle in *G* that visits every vertex exactly once.

Eulerian Paths

Hamiltonian Paths 000●

Algorithms for Eulerian and Hamiltonian path

- We know efficient algorithms for finding an Eulerian path
- The Hamiltonian path problem is considered an NP-Complete problem (i.e., we don't know an efficient problem to solve it!)