Principles of Computer Science Il
Introduction to Graph Theory

Marco Zecchini

Sapienza University of Rome

Lecture 7

M. Zecchini Principles of Computer Science |l: Introduction to Graph Theory Lecture 7 1 /28

Graph Theory
@000

Graph Definition

e We denote a graph by G = G(V, E), where
e V represents the set of vertices
V={ab,c,d, e}
o E represents the set of edges
E= {(87 b)7 (av C)» (bv C)a (b’ d)v (C7 d)7 (Cv e)}

M. Zecchini I G RS RS G TS L7 2/28

Graph Theory
[e] Jele}

Basic Definitions

We denote |V| = n — the number of vertices.

We denote |E| = m — the number of edges.

Two vertices u, v are called adjacent or neighboring vertices if
there exists an edge e = (u, v).

We say that edge e is incident to vertices u and v.

We say that vertices u and v are incident to edge e.

A loop is an edge from a node to itself: (u, u).

M. Zecchini I GRS RS G TS L7 3/28

Graph Theory
[e]e] e}

Degree of the Vertex

@ The number of edges incident to a given vertex v is called the
degree of the vertex and is denoted d(v).
e For every graph G = G(V, E),
Y d(u)=2-|m|
ueV
@ Notice that an edge connecting vertices v and w is counted in

the sum twice: first in the term d(v) and again in the term
d(w).

M. Zecchini I GRS RS G TS L7 428

Graph Theory
[e]e]e]]

Subgraphs

@ A subgraph G’ of G consists of a subset of V and E.
That is, G’ = (V', E’) where V/ C V and E' C E.

@ A spanning subgraph contains all the nodes of the original
graph.

M. Zecchini I GRS RS G Lecture? 528

SP: Breadth-first Search
[JeJele]e]

Paths

@ A path is a sequence of vertices and edges of a graph —
Vertices cannot be repeated. Edges cannot be repeated.

@ A path of length k is a sequence of vertices (vo, v1,. .., Vk),
where we have (v;,v;41) € E.

o If vi # vj forall 0 </ < j < k we call the path simple.

o If vp=vgforall 0 <ij<j<kand vy = v the path is a
cycle.

@ A path from vertex u to vertex v is a path (vo, v1,..., k)
such that vg = v and v, = v.

M. Zecchini I GRS RS G TS Lectue? 628

SP: Breadth-first Search
0@000

Shortest Paths

@ A shortest path between vertices u and v is a path from v to
v of minimum length.

@ The distance d(u, v) between vertices u and v is the length of
a shortest path between u and v.

o Ifu and v are in different connected component then

% 8

M. Zecchini

Lecture 7 7 /28

SP: Breadth-first Search
[e]e] lele]

Graph Diameter

@ The diameter D of a connected graph is the maximum (over
all pairs of vertices in the graph) distance.

D= max d(u,v)

(u,v):u,v connected
o If a graph is disconnected then we define the diameter to be
the maximum of the diameters of the connected components.

/}\

Lecture 7 8 /28

M. Zecchini

Breadth-first Search

@ Given a graph G(V/, E) and a distinguished source vertex u,

@ breadth-first search systematically explores the edges of G to
“discover” every vertex that is reachable from w.

@ It computes the distance from u to each reachable vertex.

@ It computes a spanning subgraph of G, the “breadth-first
tree”", with root u that contains all reachable vertices.

@ For any vertex v reachable from u, the path in the
breadth-first tree from u to v corresponds to a “shortest
path” from u to v in G.

M. Zecchini Principles of Computer Science I: Introduction to Graph Theory Lecture 7 9 /28

SP: Breadth-first Search
Q000e

Example of Execution of Breadth-First Search Algorithm

Initial Graph

The graph contains 9 vertices, 14

edges [
Vertex 1 is the source node. @

Vertex 1 marked as discovered. ._D @D
Vertices 2,5 marked as frontier.
All other vertices are not discovered. @ i []

o o @

Lecture 7 10 / 28

M. Zecchini

SP: Breadth-first Search
Q000e

Example of Execution of Breadth-First Search Algorithm

15t Round
Vertex 1 examines adjacent vertices.]
Vertice 2,5 marked as discovered. @

Vertices 3,4,7,8,9 marked as the -
frontier. @)D

examlnes QE
] [G)D

Lecture 7 10 / 28

M. Zecchini

SP: Breadth-first Search
Q000e

Example of Execution of Breadth-First Search Algorithm

2"d Round

Vertices 3,4,7,8,9 marked as
discovered.

Vertex 6 marked as frontier.

Lecture 7 10 / 28

M. Zecchini

SP: Breadth-first Search
Q000e

Example of Execution of Breadth-First Search Algorithm

3" Round
All vertices are discovered.

M. Zecchini

Lecture 7 10 / 28

SP: Breadth-first Search
Q000e

Example of Execution of Breadth-First Search Algorithm

Final Graph
Breadth-first search tree constructed.

M. Zecchini

Lecture 7 10 / 28

SP: Dijkstra’s Algorithm
900000000

Dijkstra’s Algorithm

Goal: Find the shortest paths from a source node to all other
nodes in a graph with non-negative weights.

Input: A weighted graph G = (V, E) and a source node s.
Output: The minimum distances from the source node to every
other node and predecessors to reconstruct the paths.

Main ldea: lteratively expand nodes based on the currently known
minimum distance.

M. Zecchini Principles of Computer Science I: Introduction to Graph Theory Lecture 7 11 / 28

SP: Dijkstra’s Algorithm
0@0000000

Dijkstra’s Algorithm: Initialization

Initialization:

All nodes set to oo, except the
source (A =0).

Initial Distances:

Node | Distance | Predecessor
A 0 -
B 00 -
C o0 -
D 00 -
E 00 -

M. Zecchini Lecture 7 12 / 28

SP: Dijkstra’s Algorithm
[e]e] lelele]ele]e)

Round 1: Process Node A

Current Node: A (distance 0).
Update distances for neighbors B
and C: d[B] =4,d[C] =2

Predecessors:
pred[B] = A, pred[C] = A

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 00 -
E 00 -
M. Zecchini Lecture 7 13 /28

Round 2: Process Node C

Current Node: C (distance 2).
Update distances for neighbors D
and E:

d[D] =3,d[E] =10
Predecessors:
pred|D] = C, pred[E] = C

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 10 C
M. Zecchini Lecture 7 14 / 28

SP: Dijkstra’s Algorithm
[e]e]ele] leelele)

Round 3: Process Node D

Current Node: D (distance 3).
Update distance for neighbor E:

d[E] = 6 (updated via D)
Predecessor: pred[E] = D

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D
M. Zecchini Lecture 7 15/ 28

SP: Dijkstra’s Algorithm
[e]e]ele]e] lelele)

Round 4: Process Node B

Current Node: B (distance 4).
No updates are made, as all
reachable nodes have shorter

paths.
Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D

M. Zecchini Principles of Computer Science l: Introduction to Graph Theory Lecture 7 16 / 28

SP: Dijkstra’s Algorithm
000000800

Final Results

Shortest Paths and Final Distances:

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D

M. Zecchini T S RS G TS Lecure7 1728

SP: Dijkstra’s Algorithm
000000080

Pseudocode

@ Initialize the distance of all nodes to oo, except the source
node s (set d[s] = 0).

@ Mark all nodes as unvisited.

© Repeat until all nodes have been visited:

e Select the unvisited node u with the smallest known distance.
e Mark u as visited.
e For each unvisited neighbor v of u:

o Calculate an alternative distance alt = d[u] + w(u, v).

o If alt < d[v], update d[v] and set pred[v] = u.

M. Zecchini e, TSR

SP: Dijkstra’s Algorithm
00000000e

Other SP algorithms

There are other algorithms to compute the shortest path in a
graph (e.g., Depth First Search).

M. Zecchini I GRS S G TS Lecture7 1928

Eulerian Paths
[JeJele]e]

Bridges of Konigsberg

Euler was interested in whether he could arrange a tour of the city
in such a way that the tour visits each bridge exactly once

Kneiphoff
Island
- Q

Lecture 7 20 /28

Pregel River

YV

M. Zecchini

Eulerian Paths
o] Jelele]

Bridge Problem

Find a tour through a city (located on n islands connected by m
bridges) that starts on one of the islands, visits every bridge exactly
once, and returns to the originating island.

Input: A map of the city with n islands and m bridges.

Output: A tour through the city that visits every bridge exactly
once and returns to the starting island.

M. Zecchini I GRS S GRS Lecure7 21/ 28

Eulerian Paths
[e]e] le]e]

M. Zecchini I G RS e RS G TS Lecue7 22/ 28

Eulerian Paths
[e]e]e] Jo]

Transformation of the Map into a Graph

@ Every island corresponds to a vertex.
@ Every bridge corresponds to an edge.

M. Zecchini

Lecture 7 23 /28

Eulerian Paths
[e]e]ele]]

Eulerian Cycle Problem

Find a cycle in a graph that visits every edge exactly once.

Input: A graph G.
Output: A cycle in G that visits every edge exactly once.

M. Zecchini e . TS R

Hamiltonian Paths
[leJele]

Hamilton's Game

@ Sir William Hamilton invented a game corresponding to a
graph whose twenty vertices were labeled with the names of
twenty famous cities.

@ The goal is to visit all twenty cities in such a way that every
city is visited exactly once before returning back to the city
where the tour started.

M. Zecchini e TSR

Hamiltonian Paths
[e] Tele]

M. Zecchini T e S RS G TS Lecue7 26/ 28

[e]e] o]
Hamiltonian Cycle Problem
Find a cycle in a graph that visits every vertex exactly once.

Input: A graph G.

Output: A cycle in G that visits every vertex exactly once.

M. Zecchini e, TSR

Hamiltonian Paths
[e]e]e])

Algorithms for Eulerian and Hamiltonian path

o We know efficient algorithms for finding an Eulerian path

@ The Hamiltonian path problem is considered an NP-Complete
problem (i.e., we don’t know an efficient problem to solve it!)

M. Zecchini e TSR

	Graph Theory
	Basic Definitions

	SP: Breadth-first Search
	SP: Dijkstra's Algorithm
	Eulerian Paths
	Hamiltonian Paths

