Principles of Computer Science Il
Sorting Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 3

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 1 /37

Sorting Algorithms
e0

Introductory Video

TEDEJ

Lessons Worth
Sharing

https://www.youtube.com/watch?v=WaNLJf8xzC4

M.Zecchini

Lecture 3 2 /37

https://www.youtube.com/watch?v=WaNLJf8xzC4

Sorting Algorithms
o]]

Sorting Problem

AN INTRODUCTION TO
BIOINFORMATICS ALGORITHMS

NEIL C. JONES AND PAVEL A. PEVZNER

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.6 - Sorting Problem

Sorting Problem:
Sort a list of integers.
Input: A list of n distinct integers a = (a1, ag, ..., ay).

Output: Sorted list of integers, that is, a reordering b =
(b1.ba,...,b,) of integers from a such that by < by < -+- <

M Zecchini T R SR e 33

esign Techniques

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 4 /37

Selection Sort: Example

M.Zecchini

Original After 1st After 2nd After 3rd After 4th After 5th
Array pass pass pass pass pass

3 1 1 1 1 1

6) E) 3 3 3 3
0] ©) e 4 4 4

8 8] 8 5 5

4 4 @ 6 ® 6

5 5 5 @ 8 8

Principles of Computer Science II: Sorting Algorithms

Lecture 3

Sorting Algorithm

ooe

election Sorting

Selection Sort Code

a=[5,1, 6, 2, 4, 3]
for i in range (0, len(a)):

min = i
find the smallest element in the rest of the array
for j in range(i + 1, len(a) - 1):
if aljl] < almin]:
min = j

swap the elements
temp = alj]

al[j]l = almin]
a[min] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms

Lecture 3

6/ 37

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)

M Zecchini S R AT Lectues 7/ 3

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)
o 1% loop: n-1
e 2" loop: n -2
o ...

M Zecchini S R AT Lectues 7/ 3

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)

1%t loop: n-1

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required

M Zecchini S R AT Lectues 7/ 3

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)

1%t loop: n-1

2" loop: n - 2

(n 1)+(n-2)+(n-3)+ ... +342+1 swaps are required
Z"(" Y swaps are requnred time complexity is O(n?)

M Zecchini S R AT Lectues 7/ 3

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)

1%t loop: n-1

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
Z@ swaps are required - time complexity is O(n?)
@ How much memory is needed 7

M Zecchini S R AT Lectues 7/ 3

Sorting Algorithms
[e]ele]]

How good is Selection Sort?

e How many swaps are required until the list is sorted? (in the
worst case scenario)

1%t loop: n-1

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
Z@ swaps are required - time complexity is O(n?)
@ How much memory is needed 7

o 2 additional slot (min and temp) - constant, O(1)!

M Zecchini S R AT Lectues 7/ 3

esign Techniques

Sorting Algorithms
[Jele}

Bubble Sorting

Bubble Sort Algorithm

Bubble Sort is an algorithm which is used to sort N elements that
are given in a memory. Bubble Sort compares all the elements one
by one and sort them according to to their values.

o It is called Bubble sort, because with each iteration the /argest
element in the list bubbles up towards the last place, just like
a water bubble rises up to the water surface.

@ Sorting takes place by stepping through all the data items
one-by-one in pairs and comparing adjacent data items and
swapping each pair that is out of order.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 8 /37

Sorting Algorithms
lo] lelele]

Bubble Sorting: Example

g | G 2 4 3 Lets take this Array.
5 1 6 2 4 3
— Here we can see the Array
1 5 6 2 4 3 after the first iteration.
L 5 2 u 3 Similarly, after other
1 5 2 4 & 3 consecutive iterations, this

— array will get sorted.

M Zecchini S R S SR Lectues o3

Bubble Sorting

Bubble Sort Code

a=[56,1, 6, 2, 4, 3]
for i in range (0, len(a)):
for j in range(0, len(a) - i - 1):
if aljl > alj+1]:
temp = alj]
aljl = alj+1]
alj+1] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3

10 / 37

Sorting Algorithm
00

O@000(

Bubble Sorting

Bubble Sort Code

a=[56,1, 6, 2, 4, 3]
for i in range (0, len(a)):
for j in range(0, len(a) - i - 1):
if aljl > alj+1]:
temp = alj]
aljl = alj+1]
alj+1] = temp

@ After the 1st pass (i = 0), the largest element is correctly placed
at the last position.

@ After the 2nd pass (i
sorted.

1), the last two elements are already

Therefore, at each iteration we can shorten the range of the inner loop:
Jj €10, len(a) — i — 1) so that we do not recompare elements that are
already in their final positions.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 37

Bubble Sorting

Bubble Sort Code

a=[56,1, 6, 2, 4, 3]
for i in range (0, len(a)):
for j in range(0, len(a) - i - 1):
if aljl > alj+1]:
temp = alj]
aljl = alj+1]
alj+1] = temp

@ The above algorithm is not efficient because as per the above
logic, the for-loop will keep executing for six iterations even if
the list gets sorted after the second iteration.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 37

Bubble Sorting

Bubble Sort Code: Version 2

@ We can insert a flag and can keep checking whether swapping
of elements is taking place or not in the following iteration.

o If no swapping is taking place, it means the list is sorted and
we can jump out of the for loop, instead executing all the
iterations.

a=[56,1, 6, 2, 4, 3]
for i in range (0, len(a)):
swapped = False # flag to track if a swap occurs
for j in range(0, len(a) - i - 1):
if aljl > alj + 1]:
temp = alj]
aljl = alj + 1]
alj + 1] = temp
swapped = True # mark that a swap happened
if not swapped:
break # exit early, list is already sorted

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 /37

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)

M Zecchini T R S A Lecues 123

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)

15t loop: n-1

2" loop: n - 2

(n 1)+(n-2)-+(n-3)+ ... 434241 swaps are required
Z”(" L swaps are required - time complexity O(n?)

M Zecchini T R S A Lecues 123

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
e 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case ?

M Zecchini T R S A Lecues 123

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)

e 1% loop: n-1

e 2" loop: n -2

o ...

o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required

° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case ?

e The list is already sorted

M Zecchini T R S A Lecues 123

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
e 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case ?
e The list is already sorted
e How many loops are required in the optimized version?

M Zecchini T R S A Lecues 123

Sorting Algorithms
Q000e

How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
e 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case ?
e The list is already sorted
e How many loops are required in the optimized version?
o N swaps are required - time complexity O(n)

M Zecchini T R S A Lecues 123

Bubble Sorting
How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
e 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case 7
e The list is already sorted
e How many loops are required in the optimized version?
o N swaps are required - time complexity O(n)
@ How much memory is needed 7

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 /37

Bubble Sorting
How good is Bubble Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
e 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required - time complexity O(n?)
@ Is there a “best” case ?
e The list is already sorted
e How many loops are required in the optimized version?
o N swaps are required - time complexity O(n)
@ How much memory is needed 7
o 1 additional slot (naive solution)
o 2 additional slot (temp + flag in the optimized solution)
e ...however, constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 /37

esign Techniques

Insertion Sorting

Insert Sort Algorithm

A simple Sorting algorithm which sorts the list by shifting elements
one by one.

M.Zecchini

It has one of the simplest implementation

It is efficient for smaller data sets, but very inefficient for
larger lists.

Insertion Sort is adaptive, that means it reduces its total
number of steps if given a partially sorted list, hence it
increases its efficiency.

It is better than Selection Sort and Bubble Sort algorithms.
Like Bubble Sorting, insertion sort also requires a single
additional memory space.

Principles of Computer Science II: Sorting Algorithms Lecture 3 13 /37

Sorting Algorithms
[e] Te]e]

Insertion Sort: Example

%5243
5 (6) 2 4 3

2_5 6 3

(Always we start with the second
element as key.)

1
1
1
1

M.Zecchini

Lets take this Array.

As we can see here, in
insertion sort, we pick up a
key, and compares it with
elemnts ahead of it, and
puts the key in the right
place

5 has nothing before it.

1is compared to 5 and is
inserted before 5.

6 is greater than 5 and 1.
2 is smaller than 6 and 5,
but greater than 1, so its is

inserted after 1.

And this goes on._.

Lecture 3

14 / 37

Algorithms
JoloI 1o}

Insertion Sorting

Insertion Sort Code

for

M.Zecchini

[65, 1, 6, 2, 4, 3]

i in range(1l, len(a)):

key = a[i] # in the first iteration, the 2nd elem is the
key

=i -1

while j >= 0 and key < aljl:
alj+1] = alj]l # it ‘‘brings’’ aljl back in the list

j =1
a[j+1] = key # from a[0] to the al[i]l now the sublist is
sorted

key: we put each element of the list, in each pass, starting
from the second element: a[1].

using the while loop, we iterate, until j becomes equal to zero
or we find an element which is greater than key, and then we
insert the key at that position.

Principles of Computer Science II: Sorting Algorithms Lecture 3 15 /37

Sorting Algorithms
[e]e]e]]

How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)

M Zecchini T R S AT L3 16/ 37

Sorting Algorithms
[e]e]e]]

How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)

1%t loop: n-1

2" loop: n - 2

(n 1)+(n-2)+(n-3)+ ... +342+1 swaps are required
Z"(" Y swaps are requnred

M Zecchini T R S AT L3 16/ 37

Sorting Algorithms
[e]e]e]]

How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
o 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required
o Is there a “best” case 7

M Zecchini T R S AT L3 16/ 37

Sorting Algorithms
[e]e]e]]

How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
o 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required
o Is there a “best” case 7
o The list is already sorted
o N swaps are required... key < a[j] condition of the while is
never met

M Zecchini T R S AT L3 16/ 37

Sorting Algorithms
[e]e]e]]

How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
o 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required
o Is there a “best” case 7
o The list is already sorted
o N swaps are required... key < a[j] condition of the while is
never met
@ How much memory is needed 7

M Zecchini T R S AT L3 16/ 37

nsertion Sorting
How good is Insertion Sort?

e How many swaps are required until the list is sorted? (in the
worst case)
o 1% loop: n-1
e 2" loop: n -2
o ...
o (n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required
o Is there a “best” case 7
o The list is already sorted
o N swaps are required... key < a[j] condition of the while is
never met
@ How much memory is needed 7
o 2 additional slot (key, j)
e constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

ign Techniques

Merge Sort

Merge Sort Algorithm

In Merge Sort the unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

@ Divide and Conquer algorithm
@ Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 17 / 37

Sorting Algorithms

Merge Sort

Merge Sort: Example

Sorted sequence

|1 2 2 3 4 5] Bl

merge

merge

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 18 / 37

Merge Sort

Merge Sort Code

def

M.Zecchini

[26, 52, 37, 63, 14, 17, 8, 6]
mergesort (list) :
if len(list) == 1:

return list

left = list[0: len(list) // 2]
right = list[len(list) // 2:]

left = mergesort(left)
right = mergesort(right)

return merge (left, right)

Principles of Computer Science |II: Sorting Algorithms Lecture 3

19 / 37

Merge Sort

Merge Sort Code

def merge(left, right):
result = []
we remove one element either from left or right
while len(left) > O and len(right) > O:
if left[0] <= right[0]:
result.append(left.pop(0))
else:
result.append(right.pop (0))
if right is empty
while len(left) > O:
result.append(left.pop(0))
if left is empty
while len(right) > O0:
result.append (right.pop(0))

return result
print ("Before: ", a)
r = mergesort (a)

print ("After: ", r)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 20 /37

Sorting Algorithms

Merge Sort

Merge Sort - Iterative version

def iterative_mergesort(a):
size = 1
n = len(a)
while size < n:
for start in range(O, n, 2 * size):
mid = start + size
end = min(start + 2 * size, n)
left = alstart:mid]
right = al[mid:end]
a[start:end] = merge(left, right)
size *= 2
return a

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 21 /37

Sorting Algorithms
O0000®
Merge Sort

How good is Merge Sort?

@ How many swaps are required until the list is sorted?
1°* loop: two lists 5 each
279 |oop: four lists 7 each
log n steps
For each partition we do n swaps
In total nlog n swaps
@ How much memory is needed 7
o A temporary array result of size |[Left + right| is needed for
merging.
o In the last recursive step, result is of size n/2 4+ n/2 =n -
space complexity O(n) (not constant).
o Optimized version works in-place

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 22 /37

esign Techniques

Quick Sort Algorithm

Quick Sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

@ Elements less than the Pivot element
@ Pivot element(Central element)

@ Elements greater than the pivot element

@ Sorts any list very quickly
@ Performance depends on the selection of the Pivot element

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 23 /37

Sorting Algorithms
O@0000

Quick Sort: Example

List: 2552 37 63 141786

@ We pick 25 as the pivot.

@ All the elements smaller to it on its left,

@ All the elements larger than to its right.

@ After the first pass the list looks like:

6 8 17 14 25 63 37 52

Now we sort two separate lists:

6 8 17 14 and 63 37 52

We apply the same logic, and we keep doing this until the
complete list is sorted.

M Zecchini T R S R Lecues 203

Sorting Algorithms
0O0e000

Quick Sort: Example

25 52 3r 63 | 14 | 17 8 B

4 t

i I

here also we will keep
on traversing the list
from back,

if a[j]=pivot & a[j]!=pivot

[]

pivot)
MNow we will keep on
traversing the list,
if a[i]<pivot & a[i]l=pivot

if both sides we find the element
not satisfying their respective
conditions, we swap them. And
keep repeating this.

DIVIDE AND CONQUER - QUICK SORT

M Zecchini T R AT Lecues 253

Sorting Algorithms

Quick Sort Code

def quicksort(list, p, r):

p = Start index of the subarray
r = End index of the subarray
if (p < r):
q = partition(list, p, r)# Partition index (pivot
position after rearranging)
quicksort (list, p, q);
quicksort(list, q + 1, r);
print ("Before: ", a)
quicksort(a, 0, len(a) - 1)

print ("After: ", a)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 37

Quick Sort Code

def

M.Zecchini

[26, 52, 37, 63, 14, 17, 8, 6]

partition(list, p, r):
pivot = list[p] # select a pivot, the value might be the

median
j=p,
while (1) :
find the first element greater than the pivot
while (list[i] < pivot and list[i] != pivot):
i +=1
find the first element smaller than the pivot
while (list[j] > pivot and list[j] != pivot):
j =1

if(i < j): # swap them
temp = list[i]
list[i] = 1list[j]
list[j] = temp
else:
return j

Principles of Computer Science II: Sorting Algorithms Lecture 3

27 / 37

Sorting Algorithms
0O0000e

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

M Zecchini T R S R Lecues 23

Sorting Algorithms
0O0000e

How good is Quick Sort?

@ How many swaps are required until the list is sorted?
@ What if we choose the smallest or the largest item as pivot?

M Zecchini T R S R Lecues 23

Sorting Algorithms
0O0000e

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

@ What if we choose the smallest or the largest item as pivot?
o 1%t loop: n - 1 (bring all the element in one of the two

partition)

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required

Z”(”2_1) swaps are required

M Zecchini T R S R Lecues 23

Sorting Algorithms
0O0000e

Quic| ort

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

@ What if we choose the smallest or the largest item as pivot?
o 1%t loop: n - 1 (bring all the element in one of the two

partition)

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required
@ What if we choose the median item as pivot?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 /37

Sorting Algorithms

00000e

Quic| ort

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

@ What if we choose the smallest or the largest item as pivot?
o 1%t loop: n - 1 (bring all the element in one of the two

partition)

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required

@ What if we choose the median item as pivot?

1° loop: two lists § each

2™ loop: four lists 2 each

log n steps
For each partition we do n swaps
In total nlog n swaps

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 /37

Sorting Algorithms

00000e

Quic| ort

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

@ What if we choose the smallest or the largest item as pivot?
o 1%t loop: n - 1 (bring all the element in one of the two

partition)

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required

@ What if we choose the median item as pivot?

1° loop: two lists § each

2™ loop: four lists 2 each

log n steps
For each partition we do n swaps
In total nlog n swaps

@ How much memory is needed 7

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 /37

Sorting Algorithms

00000e

Quic| ort

How good is Quick Sort?

@ How many swaps are required until the list is sorted?

@ What if we choose the smallest or the largest item as pivot?
o 1%t loop: n - 1 (bring all the element in one of the two

partition)

2" loop: n - 2

(n-1)+(n-2)+(n-3)+ ... +3+2+1 swaps are required
° Z@ swaps are required

@ What if we choose the median item as pivot?

1° loop: two lists § each

2™ loop: four lists 2 each

log n steps

For each partition we do n swaps
In total nlog n swaps

@ How much memory is needed 7

e 2 small additional slots.
M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 /37

Algorithm Design Techniques

000000000

Algorithm Design Techniques

For sorting, we solved the same problem using different techniques
(solve each subproblem separately, divide-and-conquer,
randomization).

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 29 /37

Algorithm Design Techniques

0@0000000

Algorithm Design Techniques

Computer scientists have discovered that many algorithms share
similar ideas, even though they solve very different problems.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 30 /37

Algorithm Design Techniques
[e]e] lelele]ele]e)

Daily life problem

T RING! RINGI RINGI RING! i
e

Jones, Pevzner: An Introduction to Bioinformatics Algorithms.
MIT Press, 2004
Section 2.9

M.Zecchini

Lecture 3 31 /37

Algorithm Design Techniques
[e]e]e] lele]ele]e)

Exhaustive Search

- e
“~RING! prng RINGI RING!
e N /

@ You ignore that the phone is ringing

@ You walk through every possible angle of the room to find the
phone

@ You eventually find the phone, but you won't be able to
answer

M Zecchini R R S SR Lecues 323

Algorithm Design Techniques
[e]e]e] lele]ele]e)

Exhaustive Search

- e
“~RINGI prng) RINGI RING!
e R /

@ You ignore that the phone is ringing

@ You walk through every possible angle of the room to find the
phone

@ You eventually find the phone, but you won't be able to
answer

@ You can optimize such an approach by omitting or pruning
part the alternatives (e.g., if the phone is ringing above your

head, just look everywhere upstairs!)
M.Zecchini " Principles of Computer Science Il: Sorting Algorithms ~ Lecture3 32 /37

Algorithm Design Techniques
[e]e]e] lele]ele]e)

Exhaustive Search

T RING) RING gNGl
~RING! ring) RING!

St

@ Is one of the algorithms for sorting doing brute force?
@ No, how would that be?

M Zecchini R R S SR Lecues 323

Algorithm Design Techniques
0000e0000

Greedy Algorithms

@ Walk in the direction of the telephone’s ringing until you
found it.

o If there is a wall (or an expensive and fragile vase) between
you and the phone, prevents you from finding the phone.

@ Unfortunately, these sorts of difficulties frequently occur in
most realistic problems.

M Zecchini S R S A e 333

Algorithm Design Techniques
0000e0000

Greedy Algorithms

@ Is one of the algorithms for sorting greedy?

M Zecchini S R S AT L 333

Algorithm Design Techniques
0000e0000

Greedy Algorithms

@ Is one of the algorithms for sorting greedy?

@ Selection sort

M Zecchini S R S AT L 333

Algorithm Design Techniques
000008000

Dynamic Programming problems

OO 00 NON U W= O
P -
ror TS0 S0 S0
P S
[P 2 B P IV N]
PN TS
ror 000 e
PR M Y
[P A R VA N
P
[EPZE VA IV EDZ B I R

[y

@ Split a problem into subproblems and solve each subproblem
to solve the general problem

@ Not applicable to the problem of the phone.

@ You want to freshen all the rooms of your house.

@ You solve the problem room by room by turning on the AC at
the proper temperature (depending on sun exposition, for
example) in each room.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 34 /37

Algorithm Design Techniques
000000800

Divide and conquer Algorithms

@ Split the problem of finding the phone into subproblems (e.g.,
look in different rooms) and solve each subproblem to solve
the general problem and then merge the solutions

@ We have seen two algorithms working in this way: Merge Sort
and Quick Sort

@ This approach goes along with recursion

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 35 /37

Algorithm Design Techniques

000000080

Randomized Algorithms

@ Toss a coin to decide whether you want to start your search of
the phone on the first floor if the coin comes up heads or on
the second floor if the coin comes up tails (you can also use a
die).

@ We have seen an algorithm working this way: Quick Sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 36 / 37

Machine Learning Approach

@ Instead of solving a problem from scratch, a system can learn
from experience.

@ Machine learning uses past data to predict or guide future
actions.

@ Example: if the phone is usually found

P(bathroom) = 0.8, P(bedroom) = 0.15, P(kitchen) = 0.05,

then start searching where it's most likely to be.
@ The algorithm becomes adaptive, improving with each
observation.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 37 /37

	Sorting Algorithms
	Sorting problem
	Selection Sorting
	Bubble Sorting
	Insertion Sorting
	Merge Sort
	Quick Sort

	Algorithm Design Techniques

