
Sorting Algorithms Algorithm Design Techniques

Principles of Computer Science II
Sorting Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 3

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 1 / 37

Sorting Algorithms Algorithm Design Techniques

Sorting problem

Introductory Video

https://www.youtube.com/watch?v=WaNLJf8xzC4

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 2 / 37

https://www.youtube.com/watch?v=WaNLJf8xzC4

Sorting Algorithms Algorithm Design Techniques

Sorting problem

Sorting Problem

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.6 - Sorting Problem

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 3 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 4 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 5 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

Selection Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

min = i

find the smallest element in the rest of the array

for j in range(i + 1, len(a) - 1):

if a[j] < a[min]:

min = j

swap the elements

temp = a[j]

a[j] = a[min]

a[min] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 6 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

1st loop: n - 1
2nd loop: n - 2
. . .

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity is O(n2)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity is O(n2)

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Selection Sorting

How good is Selection Sort?

How many swaps are required until the list is sorted? (in the
worst case scenario)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity is O(n2)

How much memory is needed ?
2 additional slot (min and temp) - constant, O(1)!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 7 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Algorithm

Bubble Sort is an algorithm which is used to sort N elements that
are given in a memory. Bubble Sort compares all the elements one
by one and sort them according to to their values.

It is called Bubble sort, because with each iteration the largest
element in the list bubbles up towards the last place, just like
a water bubble rises up to the water surface.
Sorting takes place by stepping through all the data items
one-by-one in pairs and comparing adjacent data items and
swapping each pair that is out of order.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 8 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sorting: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 9 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

for j in range(0, len(a) - i - 1):

if a[j] > a[j+1]:

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

for j in range(0, len(a) - i - 1):

if a[j] > a[j+1]:

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

After the 1st pass (i = 0), the largest element is correctly placed
at the last position.

After the 2nd pass (i = 1), the last two elements are already
sorted.

Therefore, at each iteration we can shorten the range of the inner loop:
j ∈ [0, len(a)− i − 1) so that we do not recompare elements that are
already in their final positions.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

for j in range(0, len(a) - i - 1):

if a[j] > a[j+1]:

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

The above algorithm is not efficient because as per the above
logic, the for-loop will keep executing for six iterations even if
the list gets sorted after the second iteration.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 10 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

Bubble Sort Code: Version 2

We can insert a flag and can keep checking whether swapping
of elements is taking place or not in the following iteration.
If no swapping is taking place, it means the list is sorted and
we can jump out of the for loop, instead executing all the
iterations.

a = [5, 1, 6, 2, 4, 3]

for i in range(0, len(a)):

swapped = False # flag to track if a swap occurs

for j in range(0, len(a) - i - 1):

if a[j] > a[j + 1]:

temp = a[j]

a[j] = a[j + 1]

a[j + 1] = temp

swapped = True # mark that a swap happened

if not swapped:

break # exit early , list is already sorted

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 11 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?
The list is already sorted

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?
The list is already sorted
How many loops are required in the optimized version?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?
The list is already sorted
How many loops are required in the optimized version?
N swaps are required - time complexity O(n)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?
The list is already sorted
How many loops are required in the optimized version?
N swaps are required - time complexity O(n)

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Bubble Sorting

How good is Bubble Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required - time complexity O(n2)

Is there a “best” case ?
The list is already sorted
How many loops are required in the optimized version?
N swaps are required - time complexity O(n)

How much memory is needed ?
1 additional slot (naive solution)
2 additional slot (temp + flag in the optimized solution)
...however, constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 12 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insert Sort Algorithm

A simple Sorting algorithm which sorts the list by shifting elements
one by one.

It has one of the simplest implementation
It is efficient for smaller data sets, but very inefficient for
larger lists.
Insertion Sort is adaptive, that means it reduces its total
number of steps if given a partially sorted list, hence it
increases its efficiency.
It is better than Selection Sort and Bubble Sort algorithms.
Like Bubble Sorting, insertion sort also requires a single
additional memory space.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 13 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insertion Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 14 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

Insertion Sort Code

a = [5, 1, 6, 2, 4, 3]

for i in range(1, len(a)):

key = a[i] # in the first iteration , the 2nd elem is the

key

j = i - 1

while j >= 0 and key < a[j]:

a[j+1] = a[j] # it ‘‘brings ’’ a[j] back in the list

j -= 1

a[j+1] = key # from a[0] to the a[i] now the sublist is

sorted

key: we put each element of the list, in each pass, starting
from the second element: a[1].
using the while loop, we iterate, until j becomes equal to zero
or we find an element which is greater than key, and then we
insert the key at that position.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 15 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

Is there a “best” case ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

Is there a “best” case ?
The list is already sorted
N swaps are required... key < a[j] condition of the while is
never met

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

Is there a “best” case ?
The list is already sorted
N swaps are required... key < a[j] condition of the while is
never met

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Insertion Sorting

How good is Insertion Sort?

How many swaps are required until the list is sorted? (in the
worst case)

1st loop: n - 1
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

Is there a “best” case ?
The list is already sorted
N swaps are required... key < a[j] condition of the while is
never met

How much memory is needed ?
2 additional slot (key, j)
constant!

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 16 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Algorithm

In Merge Sort the unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

Divide and Conquer algorithm
Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 17 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 18 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def mergesort(list):

if len(list) == 1:

return list

left = list [0: len(list) // 2]

right = list[len(list) // 2:]

left = mergesort(left)

right = mergesort(right)

return merge(left , right)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 19 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort Code

def merge(left , right):

result = []

we remove one element either from left or right

while len(left) > 0 and len(right) > 0:

if left [0] <= right [0]:

result.append(left.pop(0))

else:

result.append(right.pop (0))

if right is empty

while len(left) > 0:

result.append(left.pop(0))

if left is empty

while len(right) > 0:

result.append(right.pop (0))

return result

print("Before: ", a)

r = mergesort(a)

print("After: ", r)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 20 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

Merge Sort - Iterative version

def iterative_mergesort(a):

size = 1

n = len(a)

while size < n:

for start in range(0, n, 2 * size):

mid = start + size

end = min(start + 2 * size , n)

left = a[start:mid]

right = a[mid:end]

a[start:end] = merge(left , right)

size *= 2

return a

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 21 / 37

Sorting Algorithms Algorithm Design Techniques

Merge Sort

How good is Merge Sort?

How many swaps are required until the list is sorted?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n swaps
In total n log n swaps

How much memory is needed ?
A temporary array result of size |left+ right| is needed for
merging.
In the last recursive step, result is of size n/2 + n/2 = n -
space complexity O(n) (not constant).
Optimized version works in-place

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 22 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Algorithm

Quick Sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

Elements less than the Pivot element

Pivot element(Central element)

Elements greater than the pivot element

Sorts any list very quickly
Performance depends on the selection of the Pivot element

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 23 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort: Example

List: 25 52 37 63 14 17 8 6

We pick 25 as the pivot.
All the elements smaller to it on its left,
All the elements larger than to its right.
After the first pass the list looks like:
6 8 17 14 25 63 37 52
Now we sort two separate lists:
6 8 17 14 and 63 37 52
We apply the same logic, and we keep doing this until the
complete list is sorted.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 24 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort: Example

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 25 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Code

def quicksort(list , p, r):

p = Start index of the subarray

r = End index of the subarray

if (p < r):

q = partition(list , p, r)# Partition index (pivot

position after rearranging)

quicksort(list , p, q);

quicksort(list , q + 1, r);

print("Before: ", a)

quicksort(a, 0, len(a) - 1)

print("After: ", a)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 26 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

Quick Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def partition(list , p, r):

pivot = list[p] # select a pivot , the value might be the

median

i, j = p, r

while (1):

find the first element greater than the pivot

while(list[i] < pivot and list[i] != pivot):

i += 1

find the first element smaller than the pivot

while(list[j] > pivot and list[j] != pivot):

j -= 1

if(i < j): # swap them

temp = list[i]

list[i] = list[j]

list[j] = temp

else:

return j

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 27 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1 (bring all the element in one of the two
partition)
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1 (bring all the element in one of the two
partition)
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

What if we choose the median item as pivot?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1 (bring all the element in one of the two
partition)
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n swaps
In total n log n swaps

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1 (bring all the element in one of the two
partition)
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n swaps
In total n log n swaps

How much memory is needed ?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Quick Sort

How good is Quick Sort?

How many swaps are required until the list is sorted?
What if we choose the smallest or the largest item as pivot?

1st loop: n - 1 (bring all the element in one of the two
partition)
2nd loop: n - 2
. . .
(n-1)+(n-2)+(n-3)+ . . . +3+2+1 swaps are required

Σ n(n−1)
2 swaps are required

What if we choose the median item as pivot?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n swaps
In total n log n swaps

How much memory is needed ?
2 small additional slots.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 28 / 37

Sorting Algorithms Algorithm Design Techniques

Algorithm Design Techniques

For sorting, we solved the same problem using different techniques
(solve each subproblem separately, divide-and-conquer,
randomization).

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 29 / 37

Sorting Algorithms Algorithm Design Techniques

Algorithm Design Techniques

Computer scientists have discovered that many algorithms share
similar ideas, even though they solve very different problems.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 30 / 37

Sorting Algorithms Algorithm Design Techniques

Daily life problem

Jones, Pevzner: An Introduction to Bioinformatics Algorithms.
MIT Press, 2004
Section 2.9

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 31 / 37

Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

You ignore that the phone is ringing
You walk through every possible angle of the room to find the
phone
You eventually find the phone, but you won’t be able to
answer

You can optimize such an approach by omitting or pruning
part the alternatives (e.g., if the phone is ringing above your
head, just look everywhere upstairs!)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 32 / 37

Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

You ignore that the phone is ringing
You walk through every possible angle of the room to find the
phone
You eventually find the phone, but you won’t be able to
answer
You can optimize such an approach by omitting or pruning
part the alternatives (e.g., if the phone is ringing above your
head, just look everywhere upstairs!)

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 32 / 37

Sorting Algorithms Algorithm Design Techniques

Exhaustive Search

Is one of the algorithms for sorting doing brute force?

No, how would that be?

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 32 / 37

Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Walk in the direction of the telephone’s ringing until you
found it.

If there is a wall (or an expensive and fragile vase) between
you and the phone, prevents you from finding the phone.

Unfortunately, these sorts of difficulties frequently occur in
most realistic problems.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 33 / 37

Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Is one of the algorithms for sorting greedy?

Selection sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 33 / 37

Sorting Algorithms Algorithm Design Techniques

Greedy Algorithms

Is one of the algorithms for sorting greedy?

Selection sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 33 / 37

Sorting Algorithms Algorithm Design Techniques

Dynamic Programming problems

Split a problem into subproblems and solve each subproblem
to solve the general problem
Not applicable to the problem of the phone.
You want to freshen all the rooms of your house.
You solve the problem room by room by turning on the AC at
the proper temperature (depending on sun exposition, for
example) in each room.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 34 / 37

Sorting Algorithms Algorithm Design Techniques

Divide and conquer Algorithms

Split the problem of finding the phone into subproblems (e.g.,
look in different rooms) and solve each subproblem to solve
the general problem and then merge the solutions

We have seen two algorithms working in this way: Merge Sort
and Quick Sort

This approach goes along with recursion

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 35 / 37

Sorting Algorithms Algorithm Design Techniques

Randomized Algorithms

Toss a coin to decide whether you want to start your search of
the phone on the first floor if the coin comes up heads or on
the second floor if the coin comes up tails (you can also use a
die).

We have seen an algorithm working this way: Quick Sort

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 36 / 37

Sorting Algorithms Algorithm Design Techniques

Machine Learning Approach

Instead of solving a problem from scratch, a system can learn
from experience.
Machine learning uses past data to predict or guide future
actions.
Example: if the phone is usually found

P(bathroom) = 0.8, P(bedroom) = 0.15, P(kitchen) = 0.05,

then start searching where it’s most likely to be.
The algorithm becomes adaptive, improving with each
observation.

M.Zecchini Principles of Computer Science II: Sorting Algorithms Lecture 3 37 / 37

	Sorting Algorithms
	Sorting problem
	Selection Sorting
	Bubble Sorting
	Insertion Sorting
	Merge Sort
	Quick Sort

	Algorithm Design Techniques

