Divide and Conque

Principles of Computer Science Il
Divide and Conquer Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 6

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture6 1 /35

Divide and Conquer algorithms
[]

Divide and Conquer Algorithms

A divide-and-conquer algorithm proceeds in two distinct phases:

© a divide phase in which the algorithm splits a problem
instance into smaller problem instances and solves them;

@ a conquer phase in which it stitches/merge the solutions to
the smaller problems into a solution to the bigger one.

Why do we need it?

This strategy often works when a solution to a large problem can
be built from the solutions of smaller problem instances.

M Zecchini T e S e DN SRR Lt 2/ 35

Divide and Conquer algorithms Merge Sort

®00000

Merge Sort Algorithm

In Merge Sort, an unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

@ Divide and Conquer algorithm
@ Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 3 /35

e and Conquer algorithms Merge Sort

0O@0000

Merge Sort: Example

Sorted sequence

merge

merge

merge

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 4 /35

Merge Sort
[e]e] lelele]

Merge Sort: Divide and Conquer algorithm

(LT[[]eT5]

Divide n H
[1] [o]5]
[L O B O
\ / \ / \ / \ /
A\ / \ / \ / \ /
XY X ¥ Y ¥/ Y ¥/
[+]] []7] [T5]

N /s N /s
\. / \ /
\ % \ /
Conquer X X
HH ﬂﬂ
~ P
N 7
\. 7
N 7
~ ~
N 7
N X
[IeTeTsTel7 o]

M Zecchini e e e BT

Divide and Conquer algorithms Merge Sort

[e]e]e] Tele}

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]
def mergesort(list):
if len(list) == 1:

return list

left = list[0: len(list) // 2]
right = list[len(list) // 2:]

left = mergesort(left)
right = mergesort(right)

return merge (left, right)

M.Zecchini Principles of Computer Science |I: Divide and Conquer Algorithms Lecture 6 6 /35

de and Conquer alg Merge Sort

0000e0

Merge Sort Code

def merge(left, right):
result = []
while len(left) > 0 and len(right) > O0:
if left[0] <= right[0]:
result.append(left.pop (0))
else:
result.append (right.pop (0))

while len(left) > O:
result.append(left.pop(0))

while len(right) > O:
result.append(right.pop (0))

return result
print ("Before: ", a)

r = mergesort (a)
print ("After: ", r)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms

Lecture 6

7/35

Merge Sort
O0000e

How good is Merge Sort?

@ How many comparisons are required until the list is sorted?
1°* loop: two lists 5 each

2™ loop: four lists 4 each

log n steps

For each partition we do n comparisons

In total nlog n comparisons

M Zecchini e e . BT

Binary Search
900000000

Searching algorithms

Do we know an algorithm /technique to find an element in a list? J

M Zecchini T e S e DN ARSI Lectures 9/ 35

Binary Search
900000000

Searching algorithms

Do we know an algorithm /technique to find an element in a list?
Which is its time complexity?

M Zecchini T e S DN SRR Lectures 9/ 35

Binary Search
[e] lelelelelele]e)

Divide and conquer for search problem - Binary Search

@ Binary search is an efficient algorithm for finding an element
in a sorted list.

@ It requires the array to be sorted.

@ The time complexity is O(log n).

M Zecchini S S e DA A SRS Lectures 10/ 35

Binary Search
[e]e] lelelele]ele)

How it Works

© Compare the target element with the middle element of the
array.

@ If the target is equal to the middle element, the element is
found.

© If the target is smaller, search in the left half; if it's larger,
search in the right half.

@ Repeat until the element is found or the array is exhausted.

M Zecchini e e TR

Binary Search
[e]e]e] lelelelele)

Binary Search: recursive approach

def binarySearch(arr, low, high, x):
Check base case
if high >= low:
mid = low + (high - low) // 2
If element is present at the middle itself
if arr[mid] == x:
return mid
If element is smaller than mid, then it
can only be present in left subarray
elif arr[mid] > x:
return binarySearch(arr, low, mid-1, x)
Else the element can only be present
in right subarray
else:
return binarySearch(arr, mid + 1, high, x)
Element is not present in the array
else:
return -1

M Zecchini e e e TR

Binary Search
0000@0000

Example: Recursive Binary Search

e Array: {1, 2, 4,5,7,9, 10, 15, 20, 25, 30, 35, 40, 50}

o Target: 15

O Call: binarySearch(arr, 0, 13, 15) = mid = 6,
arr[mid] = 10 = 15 > 10 = recursive call on right half

@ Call: binarySearch(arr, 7, 13, 15) = mid = 10,
arr[mid] = 30 = 15 < 30 = recursive call on left half

@ Call: binarySearch(arr, 7, 9, 15) = mid = 8§,
arr[mid] = 20 = 15 < 20 = recursive call on left half

Q@ Call: binarySearch(arr, 7, 7, 15) = mid = 7,
arr[mid] = 15 = target found

Target found at index 7

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 13 / 35

Binary Search
[e]e]e]ele] lelele)

Binary Search: iterative approach

def binary_search(arr, x):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
Check if x is present at mid
if arr[mid] == x:
return mid
If x is greater, ignore left half
elif arr[mid] >= x:
left = mid + 1
If x is smaller, ignore right half
else:
right = mid - 1
return -1

M Zecchini e e TR

Binary Search
000000800

Example

e Array: {1, 2,4,5,7,9, 10, 15, 20, 25, 30, 35, 40, 50}
o Target: 15
Q left =0, right =13

@ mid = 6 (array[mid] = 10), since 15 > 10, search in the
right half

Update left tomid + 1 = 7

mid = 10 (array[mid] = 30), since 15 < 30, search in the
left half

Update right tomid - 1 = 9

o
@ mid = 8 (array[mid] = 20), since 15 < 20, search in the
left half

Update right tomid - 1 = 7
mid = 7 (array[mid] = 15), target found at index 7
M.Zecchini " Principles of Computer Science II: Divide and Conquer Algorithms ~ Lecture 6 15/ 35

© 0

© 0

Binary Search
000000080

Questions

Space complexity of the two algorithms? Which is better?

M Zecchini e e TR

Binary Search
000000080

Questions

Space complexity of the two algorithms? Which is better?

Considering the recursive call stack then the auxiliary space for the
recursive approach is O(log N).
The iterative approach space complexity is O(1)

M Zecchini e e e TR

Binary Search
00000000e

Questions

Can we do this algorithm on an unsorted list?

M Zecchini T R S e DA A SRR Lecures 17/ 35

Binary Search
00000000e

Questions

Can we do this algorithm on an unsorted list?
NO

M Zecchini T e S e DA SR SRS Lectures 17/ 35

Large Scale Computation
[]

Why Divide and Conquer performs better on large datasets

@ Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

M Zecchini e e TR

Large Scale Computation
°

Why Divide and Conquer performs better on large datasets

@ Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

o Adaptability to large data: Large datasets are often
hierarchical or structured; divide and conquer naturally fits
this structure.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 18 / 35

Large Scale Computation
°

Why Divide and Conquer performs better on large datasets

@ Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

o Adaptability to large data: Large datasets are often
hierarchical or structured; divide and conquer naturally fits
this structure.

o Parallelism: Independent subproblems can be processed
simultaneously on multiple processors/machines, making
divide and conquer ideal for modern parallel architectures.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 18 / 35

Large Scale Computation
©000
ntroduction to Large Scale Computation

Problem: Lots of data

@ Example: Homo sapiens high coverage assembly GRCh37
e 27478 contigs.
e contig length total 3.2 Gbase.
e chromosome length total 3.1 Gbase.
e Multiple TBs of data for human genome.
@ One computer can read 30-35MB/sec from hard disc
e ~ 10 months to read the data
@ ~ 100 hard drives just to store the data in compressed format
@ Even more to do something with the data.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 19 / 35

Large Scale Computation
[o] le]e}

Spread the work over many machines

M Zecchini e e TR

Large Scale Computation
[o] le]e}

Spread the work over many machines

@ Good news: same problem with 1000 machines: < 1 hour

M Zecchini e e TR

Large Scale Computation
[o] le]e}

Spread the work over many machines

@ Good news: same problem with 1000 machines: < 1 hour
@ Bad news: concurrency
e communication and coordination
recovering from machine failure
status reporting
debugging
optimization

M Zecchini e e TR

Large Scale Computation
[o] le]e}

Spread the work over many machines

@ Good news: same problem with 1000 machines: < 1 hour
@ Bad news: concurrency

e communication and coordination

e recovering from machine failure

e status reporting

e debugging

e optimization
@ Bad news 2: repeat for every problem you want to solve

M Zecchini e e TR

Large Scale Computation
[o]e] le}

Computing Clusters

@ Many racks of computers
@ Thousands of machines per cluster

@ Limited bandwidth between racks

Master Slaves/Replicas
M.Zecchini " Principles of Computer Science II: Divide and Conquer Algorithms ~ Lecture 6 21 /35

O000e000

Divide and Conquer algorithms y ort 3 Large Scale

Introduction to Large Scale Computation

Computing Environment (e.g., AWS, Google Cloud
Service)

@ Each machine has 2-4 CPUs
o Typically quad-core
e Future machines will have more cores
@ 1-6 locally-attached disks
e ~ 10TB of disk
@ Overall performance more important than peak performance
of single machines
@ Reliability
o In 1 server environment, it may stay up for three years (1000
days)
o If you have 10000 servers, expect to lose 10 each day
@ Ultra reliable hardware still fails
o We need to keep in mind cost of each machine

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 22 /35

Large Scale Computation
@®000000000000

Map Reduce Computing Paradigm

@ A simple programming model
e Applies to large-scale computing problems
o Hides difficulties of concurrency
e automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures
robustness
improvements to core libraries benefit all users of library

M Zecchini e e e TR

Large Scale Computation
O@00000000000

A typical problem

Read a lot of data

Map: extract something important from each record
Shuffle and sort

Reduce: aggregate, summarize, filter or transform
Write the results

M Zecchini e TR

ivide and Conquer algorithms Ve t 3 Large Scale Computation

O®0000000000

Map Reduce Computing Paradigm

How map works

Input Output

» Mapper b
» Mapper
» Mapper o

L] L]

L] .

[] []
p{ Mapper

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 25 /35

Large Scale Computation
000®000000000
Map Reduce Computing Paradigm

Qutput

» ﬂthe"

Input

’ ”quiCk"

“the quick brown fox” » Mapper

» “brown”

p “fox”

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 26 / 35

Large Scale Computation
0000800000000
Map Reduce Computing Paradigm

Input

Output

—»| Reducer g

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 27 / 35

Divide and Conquer algorithms

cale Computation
00000@0000000

Map Reduce Computing Paradigm

How reduce works

Input

[{“cat”: {[3, 4, 11}

—>

| {“mouse”: {[1, 2]}

Reducer

M.Zecchini

Output

*4

{“cat”: {8}

*4

{“mouse”: {3}

Principles of Computer Science II: Divide and Conquer Algorithms

Lecture 6

28 / 35

Large Scale Computation
0000008000000

Word Count example

The overall MapReduce word count process

Input Spilitting Mapping Shuffling Reducing Final result

Deer Bear River ————=

Deer Bear River —_
Car Car River »| Car Car River -
Deer Car Bear :

\'\\ I
.
A DeerCarBear —— =

M.Zecchini

Lecture 6 29 / 35

Large Scale Computation
0000000800000
Map Reduce Computing Paradigm

In more details

@ Programmer specifies two primary methods:
o map(k,v,script) — < k',v/ >*
o Takes a key-value pair and outputs a set of key-value pairs
arranged according to script
@ x denotes a set of pairs
@ There is one Map call for every (k, v) pair
o reduce(k’, < v/ >* script’) — < k/,v/ >*
o All values v’ with same key k' are reduced together with
script’ and processed in v' order
@ There is one Reduce function call per unique key k'’

@ All v/ with same k’ are reduced together with script’, in order.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 30 / 35

Divide and Conquer algorithms

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

A typical exercise for a new engineer in his/her first week:
@ Input files with one document per record
@ Specify a map function that takes a key/value pair
o key = document URL
e value = document contents

@ Output of map function is (potentially many) key/value pairs.
@ In this case, output:
(word, 1) once per word in the document

“document 1", “CTGGGCTAA"
converted to

(C, 1), (T, 1), (G, 1), (G, 1), (G, 1), (C, 1),

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 31 /35

Divide and Conquer algorithms

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

e MapReduce library gathers together all pairs with the same

key (shuffle/sort)
@ The reduce function combines the values for a key

@ In this example:

key = “A” key = “G" key = “C" key = “T"
values =1, 1 values=1,1,1 values =1, 1 values =1, 1
summarize summarize summarize summarize

2 3 2 2

@ Output of reduce paired with key and saved

(A 3). (G, 3). (C, 2), (T, 2)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 32 /35

Large Scale Computation
0000000000800

An example: Frequencies in DNA sequence

s = CTGGGCTAA’
seq = list(s) #[’°C’, °T’, °G’, °G’, °G’, °C’, °T’,
7]
sc.map (lambda symbol: (symbol, 1))\
.reduce (add)\
.collect ()

Output:
[¢ar, 2, ¢c’, 2, 6>, 3), (T, 2)]

M Zecchini e e T

Large Scale Computation
0000000000080
Map Reduce Computing Paradigm

Fault tolerance: handled via re-execution

In large scale computation on multiple nodes, there is a master
that orchestrate the entire computation and workers that executes
what the master tell them to do.
@ On worker failure:

o Detect failure via periodic heartbeats

o Re-execute completed and in-progress map tasks

e Re-execute in progress reduce tasks

e Task completion committed through master

@ On master failure:
o Restart execution

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 34 / 35

Large Scale Computation
000000000000 e

Let us see map reduce in Python

Open this Jupyter Notebook and @ .
let us see how to use MapReduce

(there are two exercises at the

end): https: u te r
//drive.google.com/file/d/ J py
1C£3UWGZPi0G9iXvIXpsh2jI1Amu6Wl1E

view?usp=drive_link v

Lecture 6 35 /35

M.Zecchini

https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link

	Divide and Conquer algorithms
	Merge Sort
	Binary Search
	Large Scale Computation
	Introduction to Large Scale Computation
	Map Reduce Computing Paradigm

