
Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Principles of Computer Science II
Divide and Conquer Algorithms

Marco Zecchini

Sapienza University of Rome

Lecture 6

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 1 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Divide and Conquer Algorithms

A divide-and-conquer algorithm proceeds in two distinct phases:

1 a divide phase in which the algorithm splits a problem
instance into smaller problem instances and solves them;

2 a conquer phase in which it stitches/merge the solutions to
the smaller problems into a solution to the bigger one.

Why do we need it?

This strategy often works when a solution to a large problem can
be built from the solutions of smaller problem instances.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 2 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Algorithm

In Merge Sort, an unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

Divide and Conquer algorithm
Performance always same for Worst, Average, Best case

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 3 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort: Example

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 4 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort: Divide and Conquer algorithm

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 5 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]

def mergesort(list):

if len(list) == 1:

return list

left = list [0: len(list) // 2]

right = list[len(list) // 2:]

left = mergesort(left)

right = mergesort(right)

return merge(left , right)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 6 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Merge Sort Code

def merge(left , right):

result = []

while len(left) > 0 and len(right) > 0:

if left [0] <= right [0]:

result.append(left.pop(0))

else:

result.append(right.pop (0))

while len(left) > 0:

result.append(left.pop(0))

while len(right) > 0:

result.append(right.pop (0))

return result

print("Before: ", a)

r = mergesort(a)

print("After: ", r)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 7 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

How good is Merge Sort?

How many comparisons are required until the list is sorted?
1st loop: two lists n

2 each
2nd loop: four lists n

4 each
. . .
log n steps
For each partition we do n comparisons
In total n log n comparisons

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 8 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Searching algorithms

Do we know an algorithm/technique to find an element in a list?

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 9 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Searching algorithms

Do we know an algorithm/technique to find an element in a list?
Which is its time complexity?

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 9 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Divide and conquer for search problem - Binary Search

Binary search is an efficient algorithm for finding an element
in a sorted list.

It requires the array to be sorted.

The time complexity is O(log n).

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 10 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

How it Works

1 Compare the target element with the middle element of the
array.

2 If the target is equal to the middle element, the element is
found.

3 If the target is smaller, search in the left half; if it’s larger,
search in the right half.

4 Repeat until the element is found or the array is exhausted.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 11 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Binary Search: recursive approach

def binarySearch(arr , low , high , x):

Check base case

if high >= low:

mid = low + (high - low) // 2

If element is present at the middle itself

if arr[mid] == x:

return mid

If element is smaller than mid , then it

can only be present in left subarray

elif arr[mid] > x:

return binarySearch(arr , low , mid -1, x)

Else the element can only be present

in right subarray

else:

return binarySearch(arr , mid + 1, high , x)

Element is not present in the array

else:

return -1

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 12 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Example: Recursive Binary Search

Array: {1, 2, 4, 5, 7, 9, 10, 15, 20, 25, 30, 35, 40, 50}
Target: 15

1 Call: binarySearch(arr, 0, 13, 15) ⇒ mid = 6,
arr[mid] = 10 ⇒ 15 > 10 ⇒ recursive call on right half

2 Call: binarySearch(arr, 7, 13, 15) ⇒ mid = 10,
arr[mid] = 30 ⇒ 15 < 30 ⇒ recursive call on left half

3 Call: binarySearch(arr, 7, 9, 15) ⇒ mid = 8,
arr[mid] = 20 ⇒ 15 < 20 ⇒ recursive call on left half

4 Call: binarySearch(arr, 7, 7, 15) ⇒ mid = 7,
arr[mid] = 15 ⇒ target found

Target found at index 7

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 13 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Binary Search: iterative approach

def binary_search(arr , x):

left , right = 0, len(arr) - 1

while left <= right:

mid = (left + right) // 2

Check if x is present at mid

if arr[mid] == x:

return mid

If x is greater , ignore left half

elif arr[mid] >= x:

left = mid + 1

If x is smaller , ignore right half

else:

right = mid - 1

return -1

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 14 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Example

Array: {1, 2, 4, 5, 7, 9, 10, 15, 20, 25, 30, 35, 40, 50}
Target: 15

1 left = 0, right = 13

2 mid = 6 (array[mid] = 10), since 15 > 10, search in the
right half

3 Update left to mid + 1 = 7

4 mid = 10 (array[mid] = 30), since 15 < 30, search in the
left half

5 Update right to mid - 1 = 9

6 mid = 8 (array[mid] = 20), since 15 < 20, search in the
left half

7 Update right to mid - 1 = 7

8 mid = 7 (array[mid] = 15), target found at index 7

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 15 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Questions

Space complexity of the two algorithms? Which is better?

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 16 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Questions

Space complexity of the two algorithms? Which is better?

Considering the recursive call stack then the auxiliary space for the
recursive approach is O(logN).
The iterative approach space complexity is O(1)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 16 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Questions

Can we do this algorithm on an unsorted list?

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 17 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Questions

Can we do this algorithm on an unsorted list?

NO

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 17 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Why Divide and Conquer performs better on large datasets

Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

Adaptability to large data: Large datasets are often
hierarchical or structured; divide and conquer naturally fits
this structure.

Parallelism: Independent subproblems can be processed
simultaneously on multiple processors/machines, making
divide and conquer ideal for modern parallel architectures.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 18 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Why Divide and Conquer performs better on large datasets

Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

Adaptability to large data: Large datasets are often
hierarchical or structured; divide and conquer naturally fits
this structure.

Parallelism: Independent subproblems can be processed
simultaneously on multiple processors/machines, making
divide and conquer ideal for modern parallel architectures.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 18 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Why Divide and Conquer performs better on large datasets

Smaller subproblems: Each recursive call divides the problem
into smaller pieces, quickly reducing the input size. For
example, Binary Search halves the search space at each step.

Adaptability to large data: Large datasets are often
hierarchical or structured; divide and conquer naturally fits
this structure.

Parallelism: Independent subproblems can be processed
simultaneously on multiple processors/machines, making
divide and conquer ideal for modern parallel architectures.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 18 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Problem: Lots of data

Example: Homo sapiens high coverage assembly GRCh37
27478 contigs.
contig length total 3.2 Gbase.
chromosome length total 3.1 Gbase.
Multiple TBs of data for human genome.

One computer can read 30-35MB/sec from hard disc
∼ 10 months to read the data

∼ 100 hard drives just to store the data in compressed format
Even more to do something with the data.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 19 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Spread the work over many machines

Good news: same problem with 1000 machines: ≤ 1 hour
Bad news: concurrency

communication and coordination
recovering from machine failure
status reporting
debugging
optimization

Bad news 2: repeat for every problem you want to solve

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 20 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Spread the work over many machines

Good news: same problem with 1000 machines: ≤ 1 hour

Bad news: concurrency
communication and coordination
recovering from machine failure
status reporting
debugging
optimization

Bad news 2: repeat for every problem you want to solve

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 20 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Spread the work over many machines

Good news: same problem with 1000 machines: ≤ 1 hour
Bad news: concurrency

communication and coordination
recovering from machine failure
status reporting
debugging
optimization

Bad news 2: repeat for every problem you want to solve

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 20 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Spread the work over many machines

Good news: same problem with 1000 machines: ≤ 1 hour
Bad news: concurrency

communication and coordination
recovering from machine failure
status reporting
debugging
optimization

Bad news 2: repeat for every problem you want to solve

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 20 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Computing Clusters

Many racks of computers

Thousands of machines per cluster

Limited bandwidth between racks

Master Slaves/Replicas
M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 21 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Introduction to Large Scale Computation

Computing Environment (e.g., AWS, Google Cloud
Service)

Each machine has 2-4 CPUs
Typically quad-core
Future machines will have more cores

1-6 locally-attached disks
∼ 10TB of disk

Overall performance more important than peak performance
of single machines
Reliability

In 1 server environment, it may stay up for three years (1000
days)
If you have 10000 servers, expect to lose 10 each day

Ultra reliable hardware still fails
We need to keep in mind cost of each machine

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 22 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Map Reduce Computing Paradigm

A simple programming model
Applies to large-scale computing problems

Hides difficulties of concurrency
automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures
robustness
improvements to core libraries benefit all users of library

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 23 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

A typical problem

Read a lot of data
Map: extract something important from each record
Shuffle and sort
Reduce: aggregate, summarize, filter or transform
Write the results

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 24 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

How map works

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 25 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 26 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 27 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

How reduce works

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 28 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Word Count example

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 29 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

In more details

Programmer specifies two primary methods:
map(k , v , script) → < k ′, v ′ >∗

Takes a key-value pair and outputs a set of key-value pairs
arranged according to script
∗ denotes a set of pairs
There is one Map call for every (k, v) pair

reduce(k ′, < v ′ >∗, script′) → < k ′, v ′ >∗

All values v’ with same key k’ are reduced together with
script′ and processed in v’ order
There is one Reduce function call per unique key k’

All v ′ with same k ′ are reduced together with script′, in order.

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 30 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

A typical exercise for a new engineer in his/her first week:

Input files with one document per record
Specify a map function that takes a key/value pair

key = document URL
value = document contents

Output of map function is (potentially many) key/value pairs.
In this case, output:
(word, 1) once per word in the document

“document 1”, “CTGGGCTAA”
converted to
(C, 1), (T, 1), (G, 1), (G, 1), (G, 1), (C, 1), . . .

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 31 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

MapReduce library gathers together all pairs with the same
key (shuffle/sort)
The reduce function combines the values for a key
In this example:

key = “A”
values = 1, 1
summarize
2

key = “G”
values = 1, 1, 1
summarize
3

key = “C”
values = 1, 1
summarize
2

key = “T”
values = 1, 1
summarize
2

Output of reduce paired with key and saved

(A, 3), (G, 3), (C, 2), (T, 2)

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 32 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

An example: Frequencies in DNA sequence

s = ’CTGGGCTAA ’

seq = list(s) #[’C’, ’T’, ’G’, ’G’, ’G’, ’C’, ’T’, ’A’, ’A

’]

sc.map(lambda symbol: (symbol , 1))\

.reduce(add)\

.collect ()

Output:

[(’A’, 2), (’C’, 2), (’G’, 3), (’T’, 2)]

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 33 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Fault tolerance: handled via re-execution

In large scale computation on multiple nodes, there is a master
that orchestrate the entire computation and workers that executes
what the master tell them to do.

On worker failure:
Detect failure via periodic heartbeats
Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks
Task completion committed through master

On master failure:
Restart execution

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 34 / 35

Divide and Conquer algorithms Merge Sort Binary Search Large Scale Computation

Map Reduce Computing Paradigm

Let us see map reduce in Python

Open this Jupyter Notebook and
let us see how to use MapReduce
(there are two exercises at the
end): https:
//drive.google.com/file/d/

1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/

view?usp=drive_link

M.Zecchini Principles of Computer Science II: Divide and Conquer Algorithms Lecture 6 35 / 35

https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link
https://drive.google.com/file/d/1Cf3UWGZPiOG9iXvIXpsh2jIlAmu6WlFz/view?usp=drive_link

	Divide and Conquer algorithms
	Merge Sort
	Binary Search
	Large Scale Computation
	Introduction to Large Scale Computation
	Map Reduce Computing Paradigm

