

Principles of Computer Science II

Data Structure

Marco Zecchini

Sapienza University of Rome

Lecture 6

Counting Frequencies Problem

Problem: Given a list of numbers, count how many times each number appears.

Example:

$$[2, 3, 2, 5, 3, 2, 7, 5, 3] \longrightarrow \begin{cases} 2 : 3 \\ 3 : 3 \\ 5 : 2 \\ 7 : 1 \end{cases}$$

We will solve this problem using two different data structures:

- A **list** of pairs (number, count)
- A **dictionary**

Solution 1: Using a List

Idea: Maintain a list of pairs [number, count]. For each number in the input list, search if it already exists; if yes, increase its count, otherwise append it.

```
counts = []
for n in numbers:
    found = False
    for pair in counts:
        if pair[0] == n:
            pair[1] += 1
            found = True
            break
    if not found:
        counts.append([n, 1])
```

Solution 2: Using a Dictionary

Idea: Use a dictionary that directly associates each number to its count (remember: in a dictionary we access the value associated with a key in constant time).

```
counts = {}
for n in numbers:
    if n in counts:
        counts[n] += 1
    else:
        counts[n] = 1
```

Question

Which is better of the two in terms of time complexity? And why?

Summary and Discussion

Same problem, different data structures:

Approach	Data Structure	Time Complexity
Naive counting	List of pairs	$O(n^2)$
Efficient counting	Dictionary	$O(n)$

Key takeaway: Choosing the right **data structure** can drastically improve algorithm performance, even when solving the *same* problem.

Outline of the lecture

- Until now, most of the times, we have always worked with primitive data types (integer, float, string, char)...

Outline of the lecture

- Until now, most of the times, we have always worked with primitive data types (integer, float, string, char)...
- ...and combined them into two simple data structure: **which are these?**

Outline of the lecture

- Until now, most of the times, we have always worked with primitive data types (integer, float, string, char)...
- ...and combined them into two simple data structure: **which are these?**
- List and Dictionaries

Outline of the lecture

- Until now, most of the times, we have always worked with primitive data types (integer, float, string, char)...
- ...and combined them into two simple data structure: **which are these?**
- List and Dictionaries
- In the rest of the lecture (and partially of the course), we will see more complex data structure

First: what is a Class in Python?

The Idea

A **class** is a **template** for creating objects. It defines the *properties* (data) and *behaviours* (functions) that those objects will have.

Quick Intuition

Think of a class as a **recipe**. An **object** is a dish prepared from that recipe.

Mini example

```
class Dog:  
    def __init__(self, name):  
        self.name = name  
  
    def bark(self):  
        print("Woof!")  
  
my_dog = Dog("Fido")  
my_dog.bark()
```

Linked List

Idea: A sequence of nodes, each containing a value and a reference to the next node.

```
class Node:  
    def __init__(self, value):  
        self.value = value  
        self.next = None
```

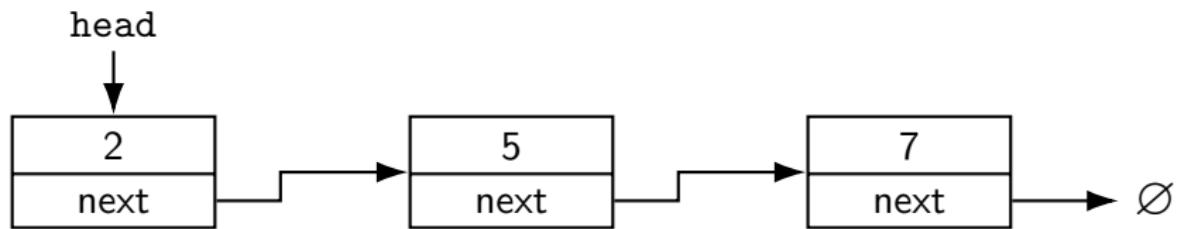
Advantages:

- Efficient insertions/deletions at both ends
- Dynamic memory usage

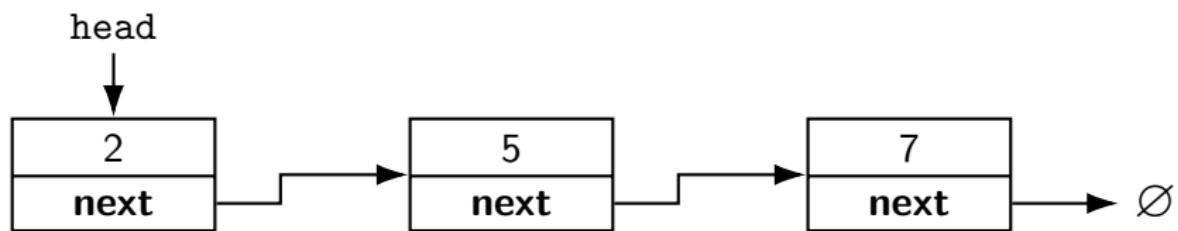
Drawbacks:

- Random access not possible ($O(n)$)
- Extra memory for pointers

Singly Linked List — Structure

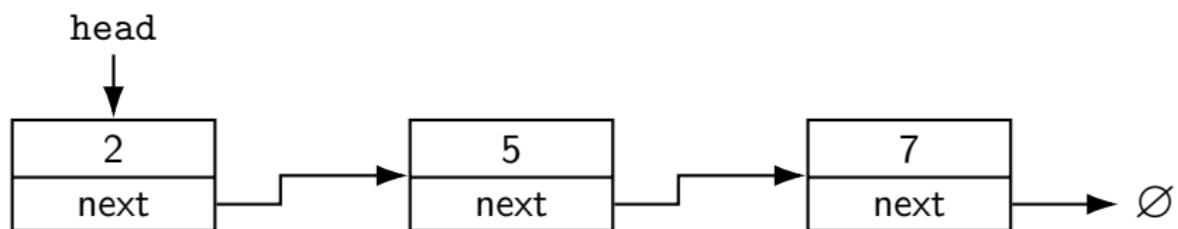


Singly Linked List — Structure



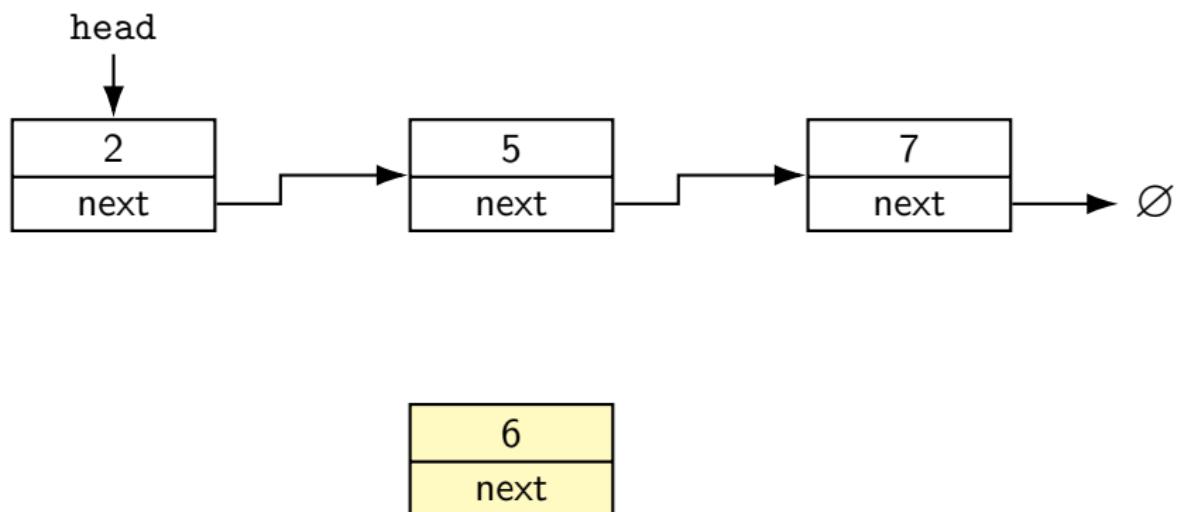
Each node stores **data** and a pointer to **next**

Linked List — Insertion (between two nodes)



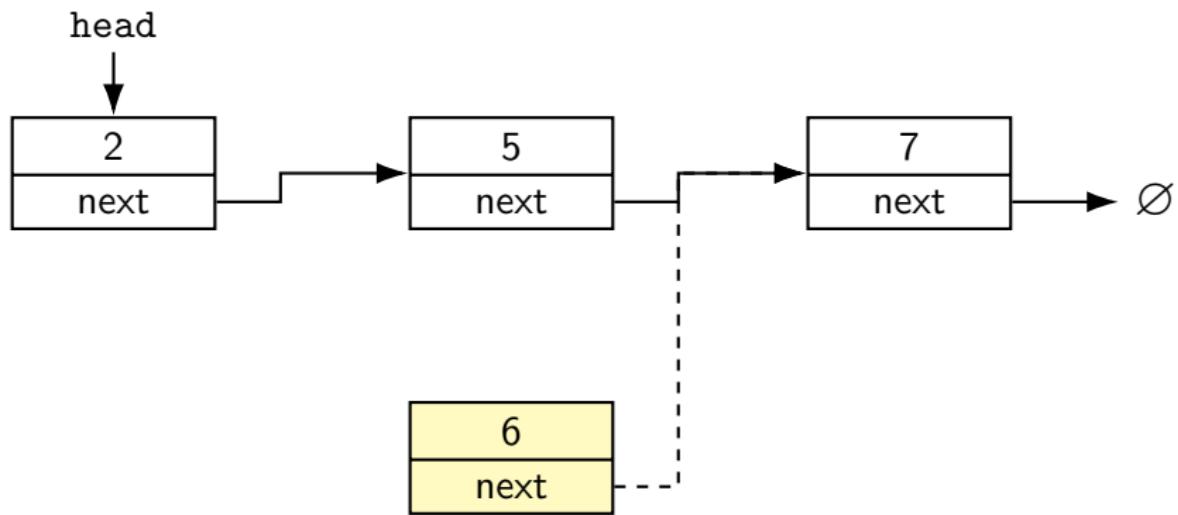
Goal: insert **6** after node **5**

Linked List — Insertion (between two nodes)



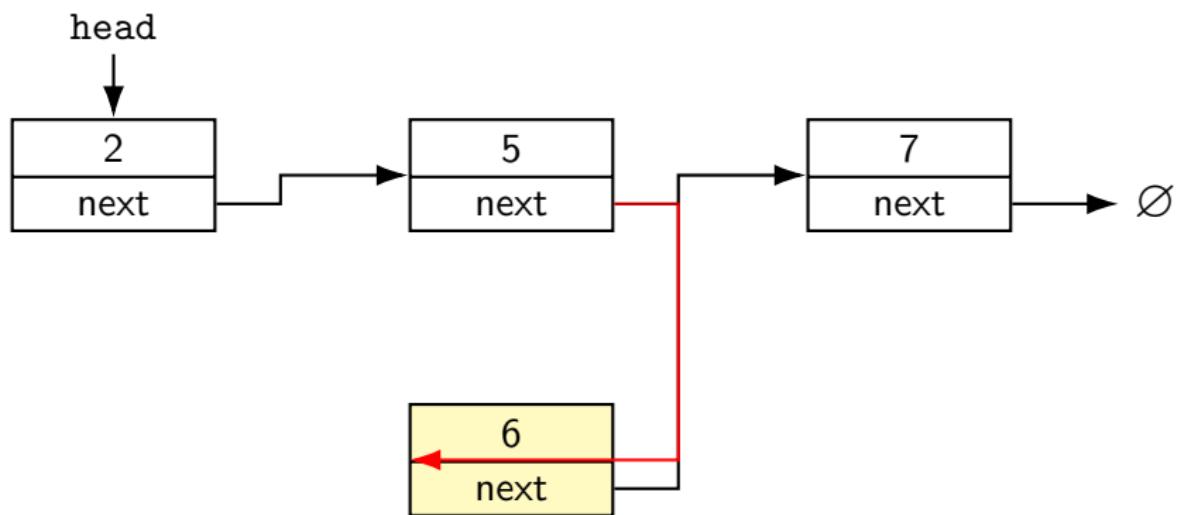
- 1) Allocate new node $X=6$

Linked List — Insertion (between two nodes)



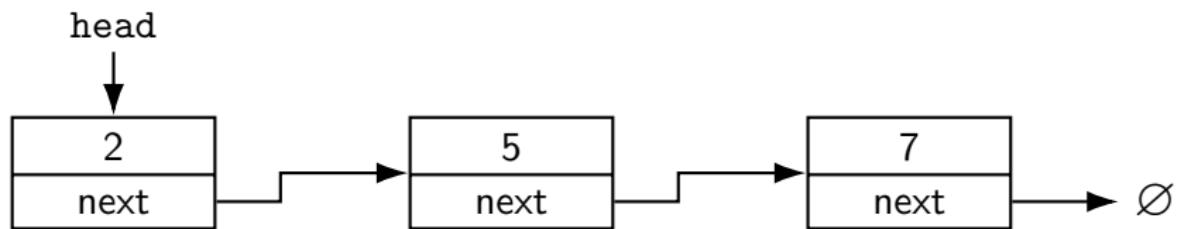
2) Set `X.next = 7`

Linked List — Insertion (between two nodes)



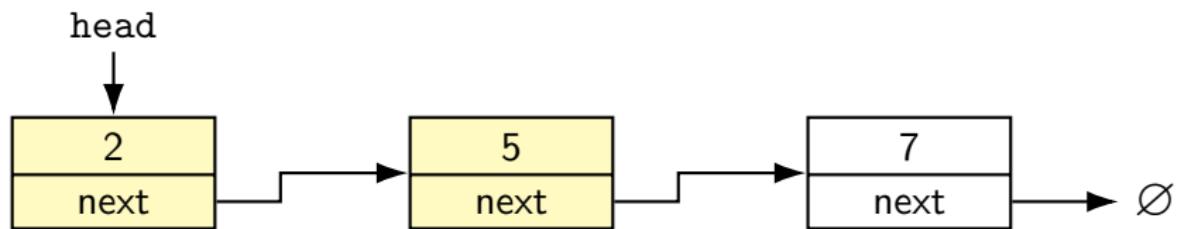
3) Set $5.\text{next} = X \rightarrow$ insertion complete

Linked List — Deletion (bypass the target node)



Goal: delete node 5 (have pointer to **prev=2**)

Linked List — Deletion (bypass the target node)

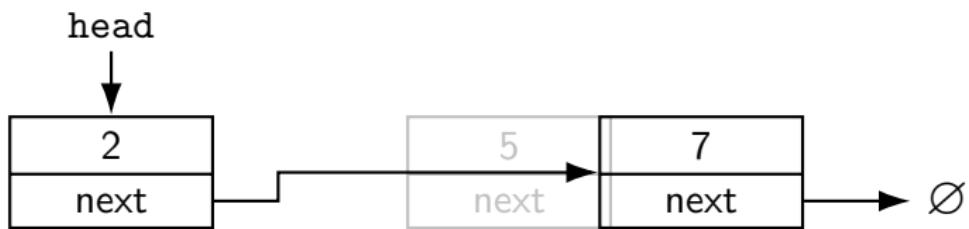


- 1) Identify **prev** (2) and **target** (5)

Linked List — Deletion (bypass the target node)

2) Set `prev.next = target.next`

Linked List — Deletion (bypass the target node)



3) (Optional) deallocate **target**

Do we need Linked List in Python?

Question

In a framework like Python, do we actually need them?

Do we need Linked List in Python?

Question

In a framework like Python, do we actually need them?

No, we actually don't! We already have Lists that have the same benefits: we essentially saw how Lists are implemented behind the hood (or a way to do that)

Stack and Queue

Two fundamental ways to organize and manage elements:

Stack — LIFO (Last In, First Out)

- The last element added is the first one to be removed.
- Think of a stack of plates: you remove the top one first.
- Useful when an algorithm needs to “go back”: recursion, undo mechanisms, backtracking.

Queue — FIFO (First In, First Out)

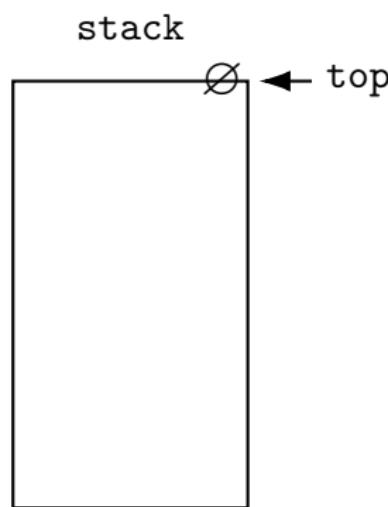
- The first element added is the first one to be removed.
- Like a line at the supermarket: first come, first served.
- Used when order must be respected: task scheduling, BFS, event handling.

Stack and Queue (cont.)

Why are they important?

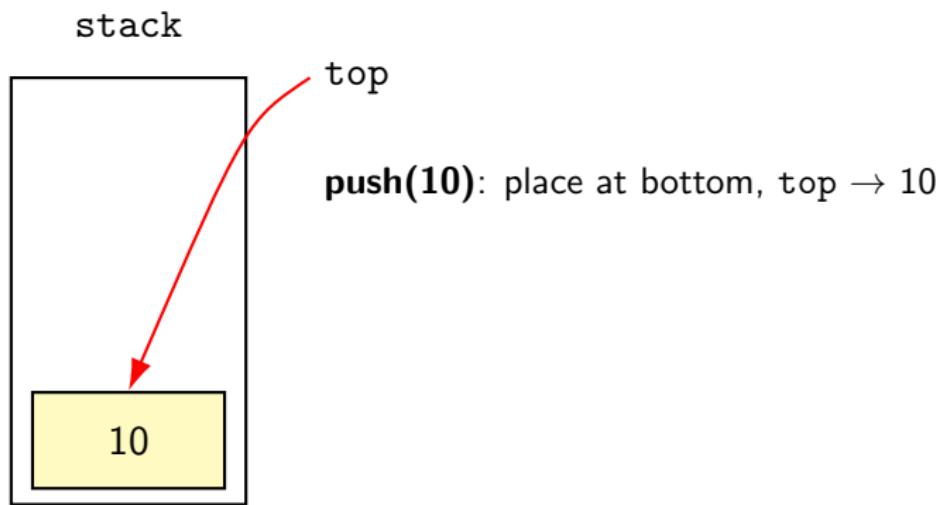
- They impose a simple but powerful order on how elements are processed.
- They help control the flow of algorithms clearly and predictably.
- They mirror natural behaviors (stacks, lines) → easy to understand, essential in computing.

Stack (LIFO) — Structure and Push

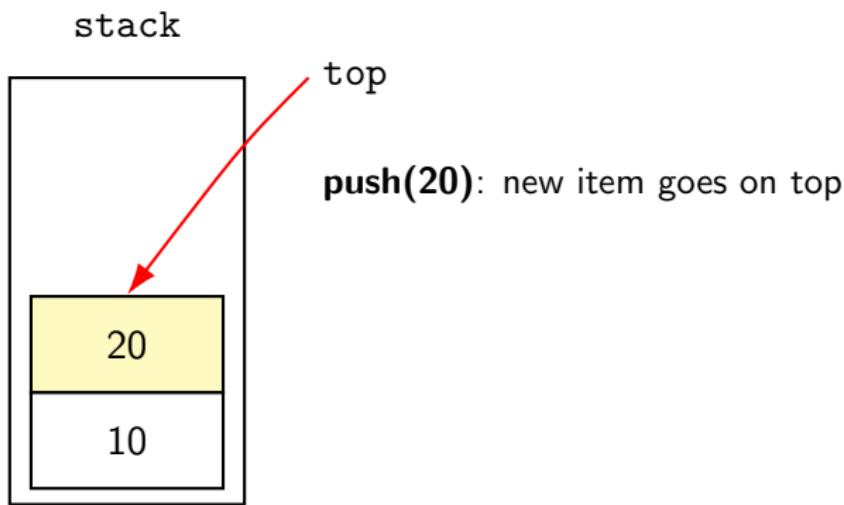


Empty stack: top = null

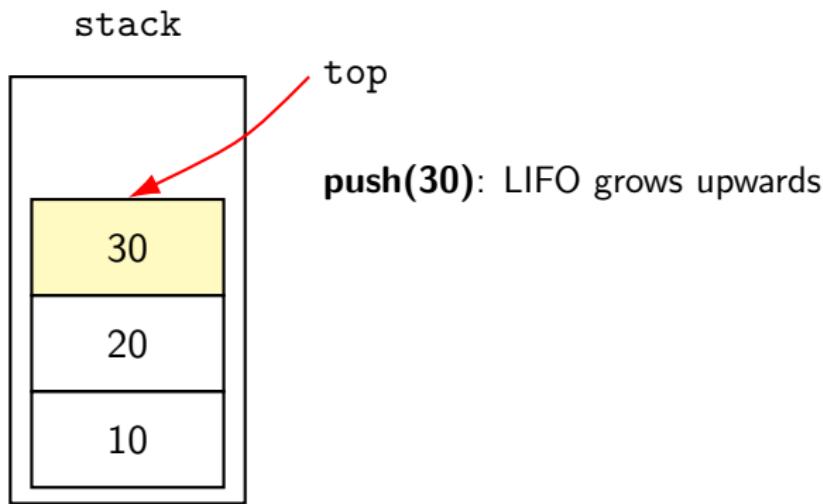
Stack (LIFO) — Structure and Push



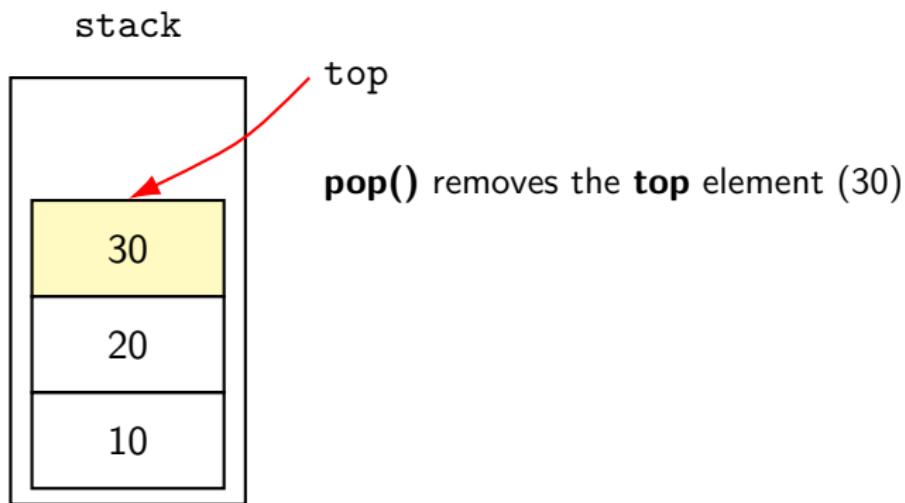
Stack (LIFO) — Structure and Push



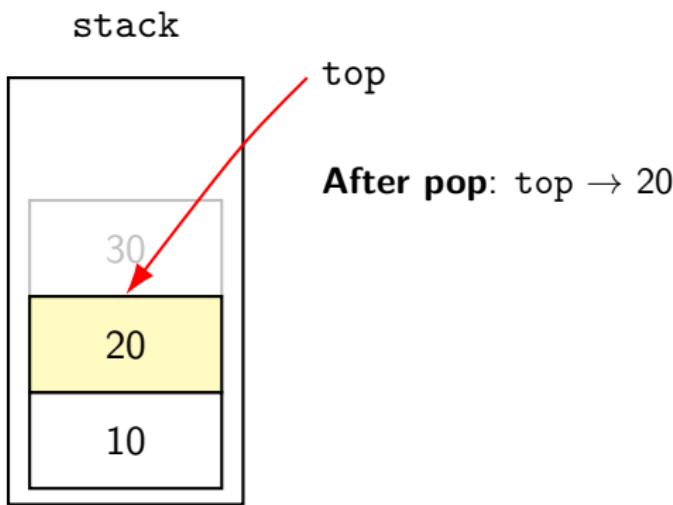
Stack (LIFO) — Structure and Push



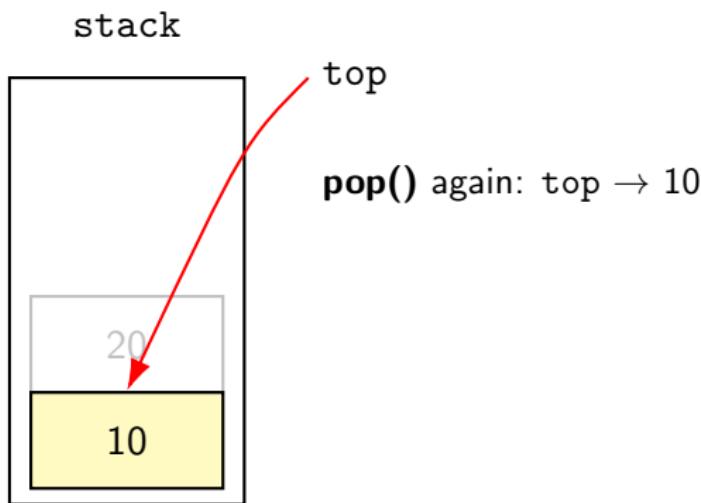
Stack (LIFO) — Pop (Deletion)



Stack (LIFO) — Pop (Deletion)



Stack (LIFO) — Pop (Deletion)



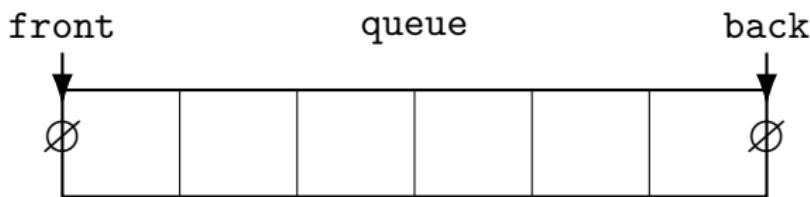
Stack in Python

Minimal Stack implementation

```
class Stack:
    def __init__(self):
        self.items = []
    def is_empty(self):
        return len(self.items) == 0
    def push(self, item):
        self.items.append(item)
    def pop(self):
        if not self.is_empty():
            return self.items.pop()
        raise IndexError("Stack is empty.")
    def peek(self):
        if not self.is_empty():
            return self.items[-1]
        raise IndexError("Stack is empty.")

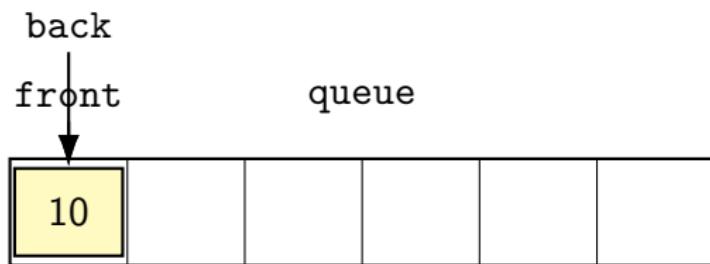
my_stack = Stack()
my_stack.push(10)
my_stack.push(20)
my_stack.push(30)
print(my_stack.pop()) # 30
print(my_stack.peek()) # 20
```

Queue (FIFO) — Structure and Enqueue



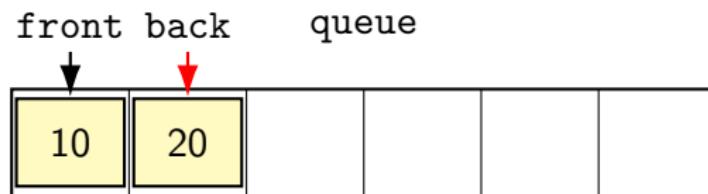
Empty queue: $\text{front} = \text{back} = \text{null}$

Queue (FIFO) — Structure and Enqueue



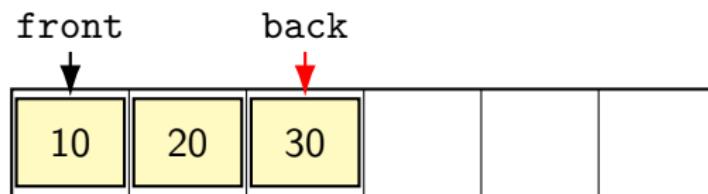
enqueue(10): first element sets both front and back

Queue (FIFO) — Structure and Enqueue



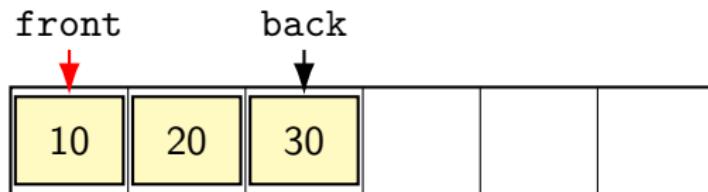
enqueue(20): insert at back

Queue (FIFO) — Structure and Enqueue



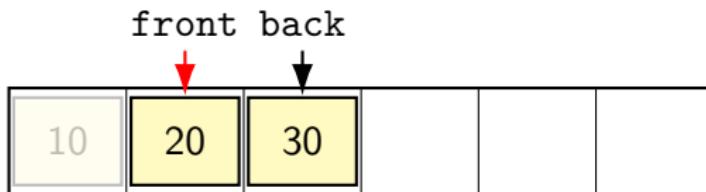
enqueue(30): FIFO grows to the right

Queue (FIFO) — Dequeue (Deletion)



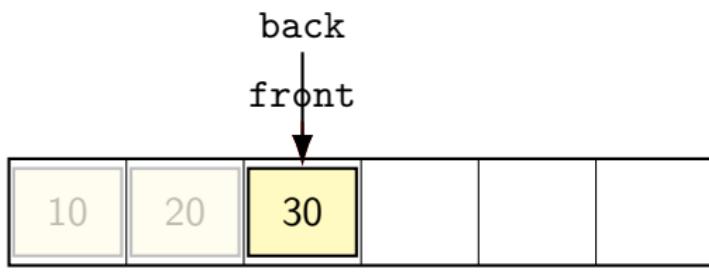
dequeue() removes the **front** element (10)

Queue (FIFO) — Dequeue (Deletion)



After dequeue: front \rightarrow 20

Queue (FIFO) — Dequeue (Deletion)



Queue in Python

Minimal Queue implementation

```
from collections import deque
class Queue:
    def __init__(self):
        self.items = deque()

    def is_empty(self):
        return len(self.items) == 0
    def enqueue(self, item):
        self.items.append(item)
    def dequeue(self):
        if not self.is_empty():
            return self.items.popleft()
        raise IndexError("Queue is empty.")
    def peek(self):
        if not self.is_empty():
            return self.items[0]
        raise IndexError("Queue is empty.")

# Using the queue
my_queue = Queue()
my_queue.enqueue("A")
my_queue.enqueue("B")
my_queue.enqueue("C")
print(my_queue.dequeue()) # Output: A
print(my_queue.peek()) # Output: B
```

Tree Data Structures

What is a Tree?

A **tree** is a hierarchical data structure composed of **nodes** connected by **edges**. It represents relationships like those found in family trees, organization charts, or file systems.

Tree Data Structures

What is a Tree?

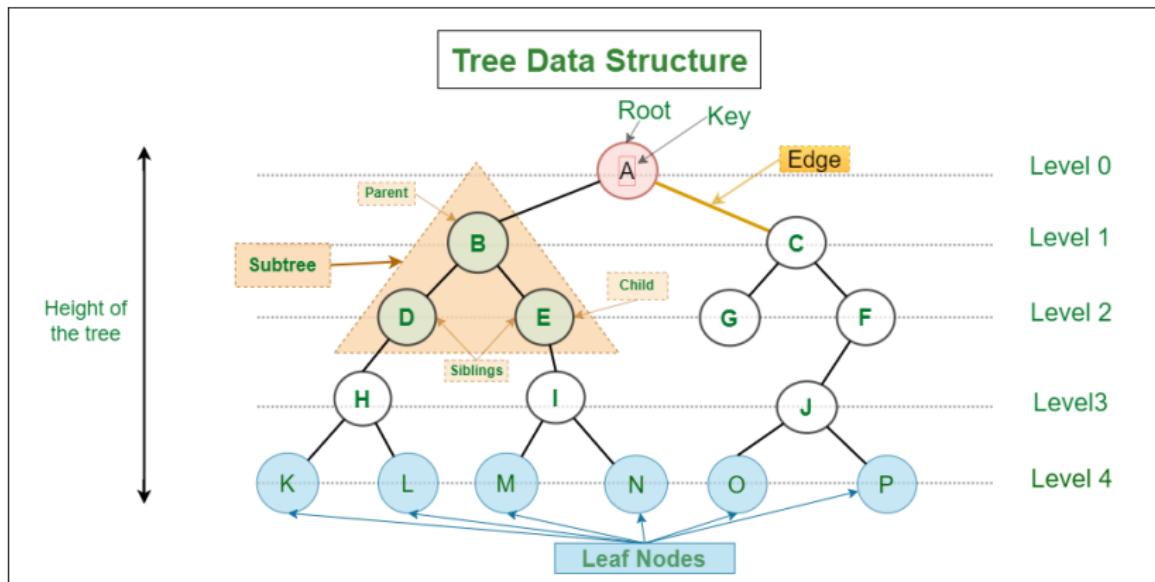
A **tree** is a hierarchical data structure composed of **nodes** connected by **edges**. It represents relationships like those found in family trees, organization charts, or file systems.

Why Trees?

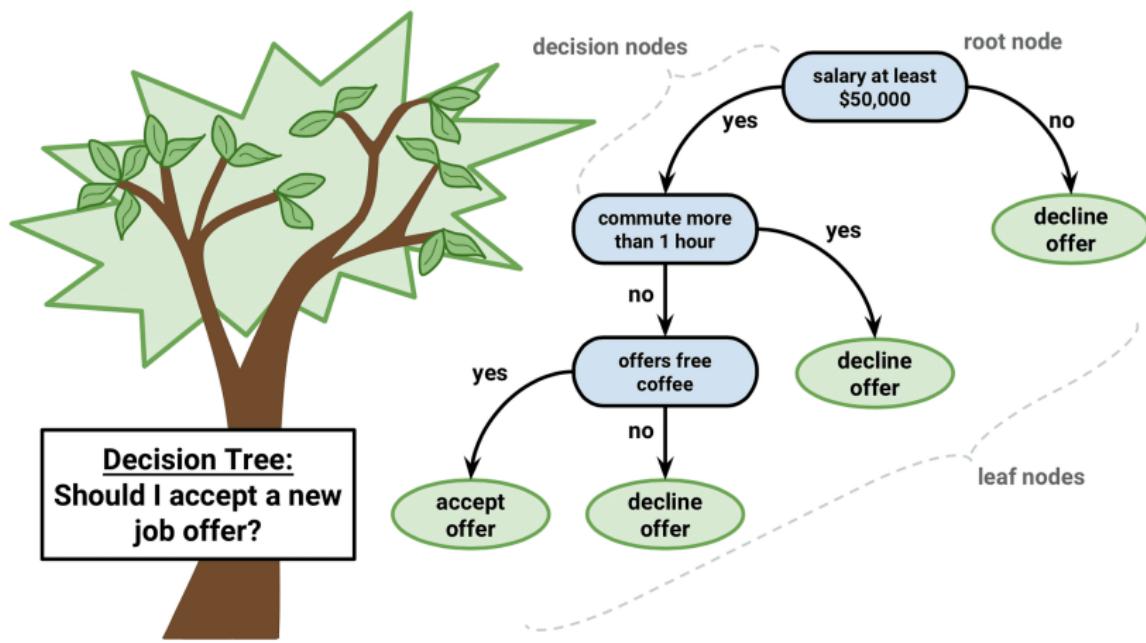
They allow efficient representation of hierarchical relationships and form the basis of:

- Search and decision structures (e.g. Binary Search Trees)
- Hierarchical data models (e.g. XML, file systems)
- Optimization algorithms and parsing

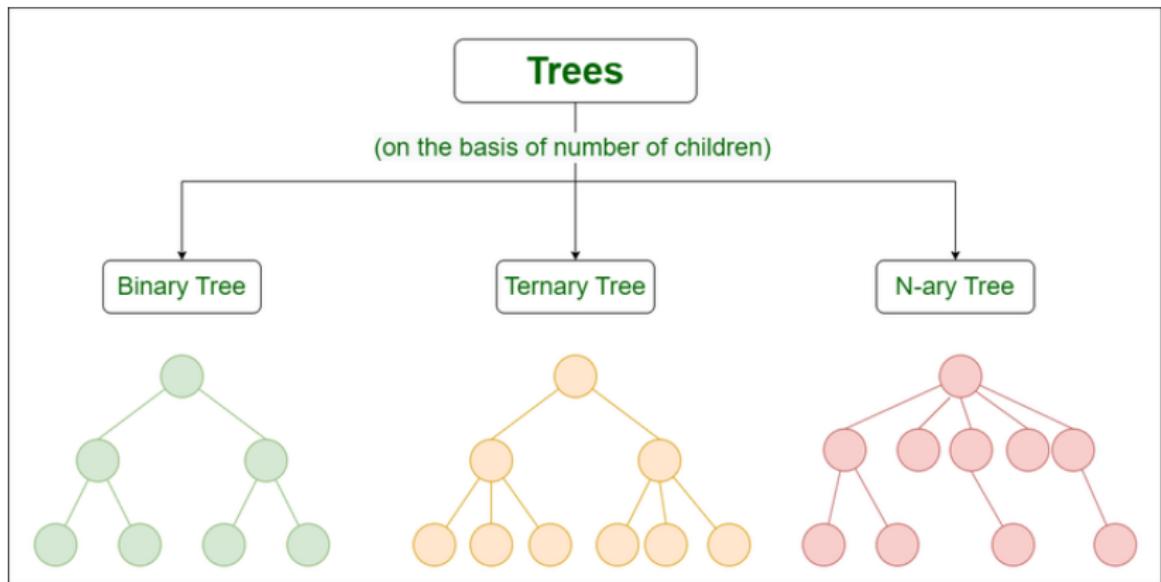
Tree (cont.)



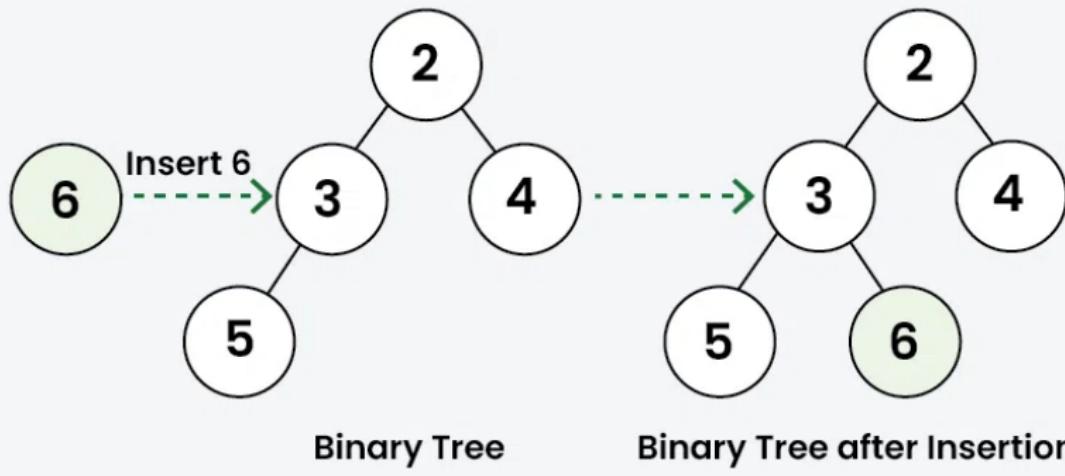
Tree application



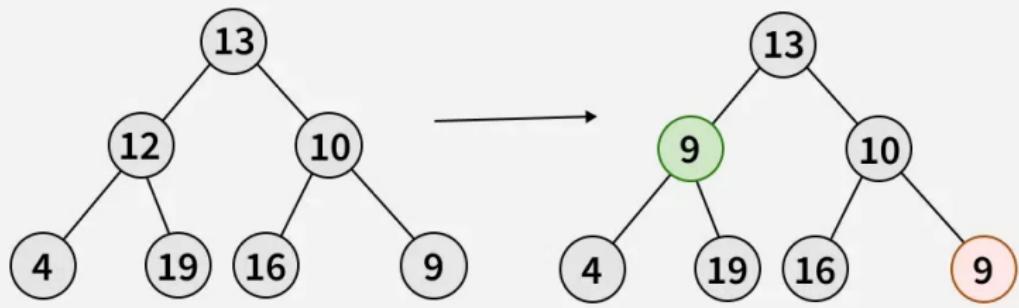
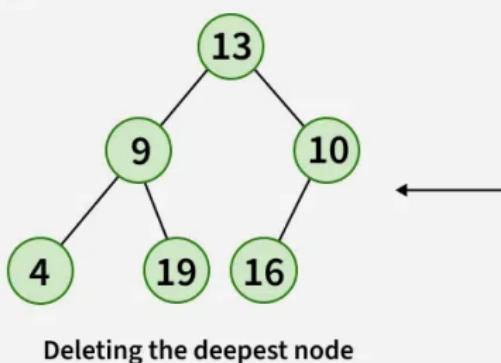
N-ary Tree, Ternary Tree, Binary Tree



Insertion in a binary tree



Deletion in a binary tree



Questions

Are the nodes sorted?

Questions

Are the nodes sorted? How can I look for a specific key in a tree?

Binary Search Trees (BST)

What is a Binary Search Tree?

A **Binary Search Tree (BST)** is a special type of **binary tree** where each node satisfies:

left subtree values < node value < right subtree values

- Each node has at most **two children**: a **left child** and a **right child**.
- The structure maintains a **sorted order**, enabling efficient search.
- Common operations: **insertion**, **search**, and **deletion**.

Binary Search Trees (BST)

What is a Binary Search Tree?

A **Binary Search Tree (BST)** is a special type of **binary tree** where each node satisfies:

left subtree values $<$ node value $<$ right subtree values

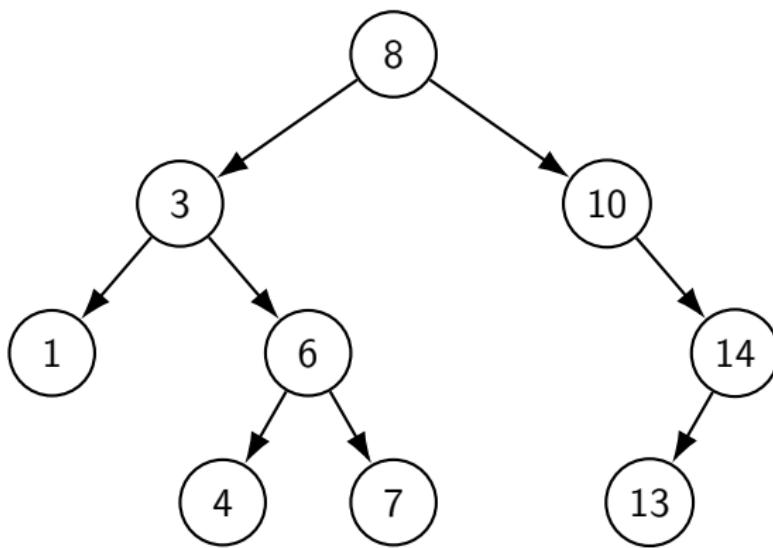
- Each node has at most **two children**: a **left child** and a **right child**.
- The structure maintains a **sorted order**, enabling efficient search.
- Common operations: **insertion**, **search**, and **deletion**.

Why are BSTs useful?

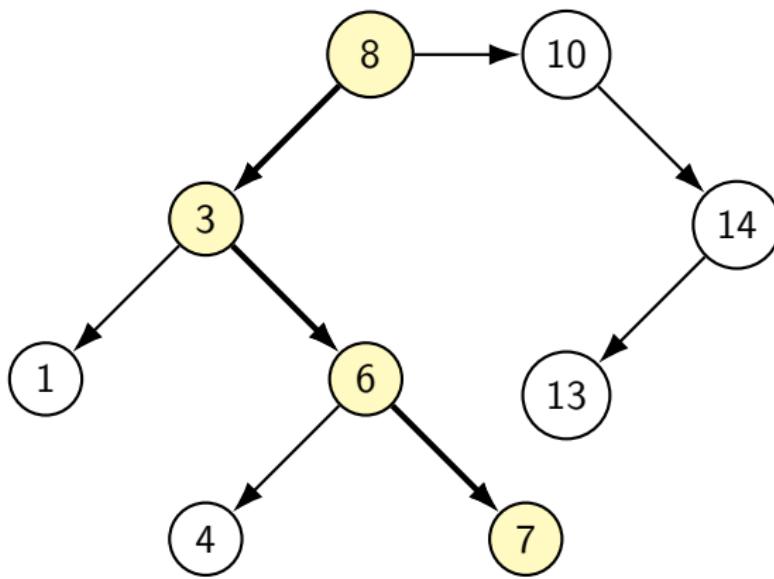
They allow:

- Searching in $O(\log n)$ time (on average)
- Maintaining dynamic, sorted data
- Forming the basis for balanced trees

BST — Example

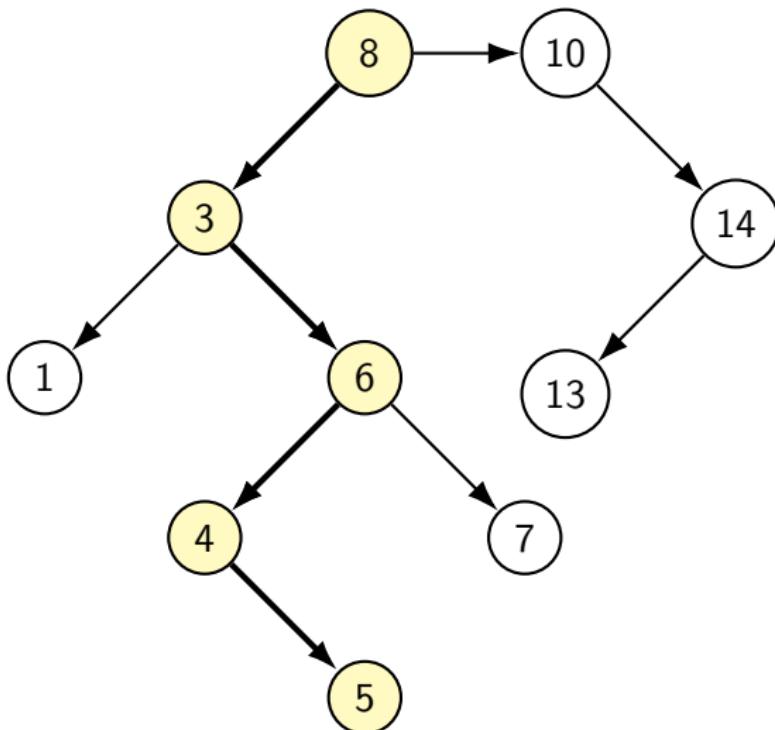


BST — Search for 7



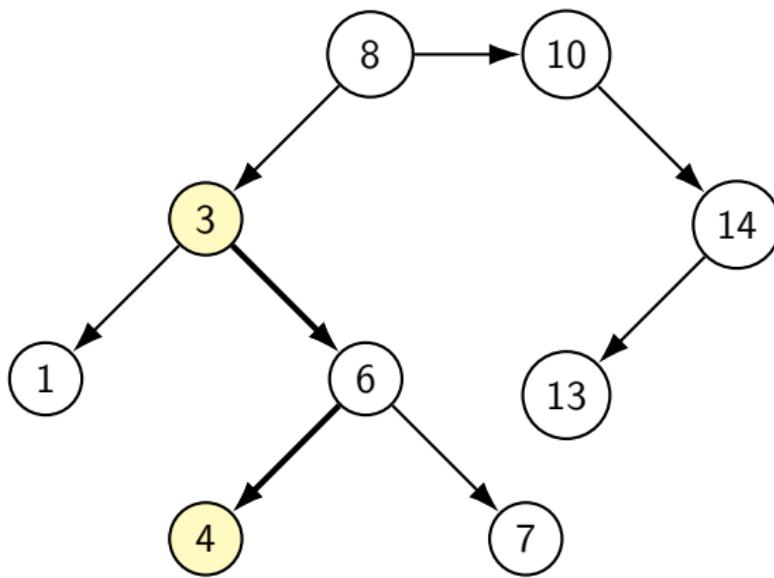
Path compared: $8 \rightarrow 3 \rightarrow 6 \rightarrow 7$ (found).

BST — Insertion of 5



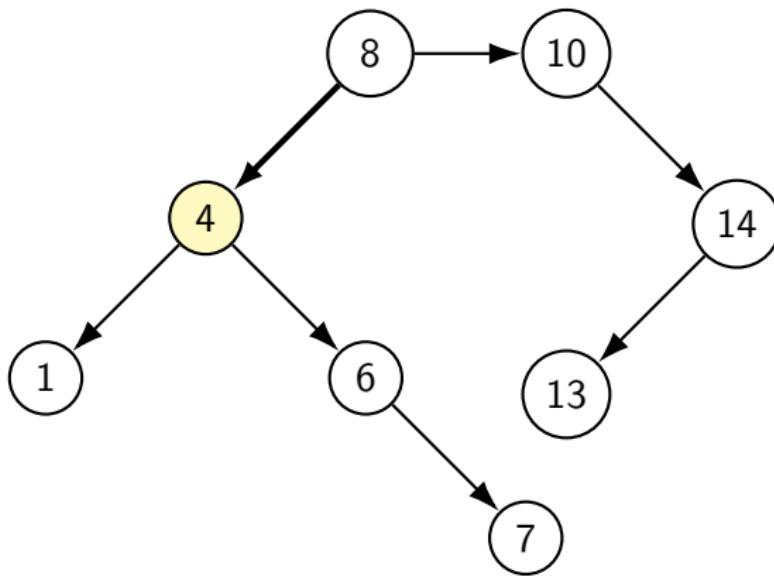
Insert path: 8 → 3 → 6 → 4 → _ (right) ⇒ 5.

BST — Deletion of 3 (two children)



Step 1: Node 3 has two children. Inorder successor is 4.

BST — Deletion of 3 (two children)



Step 2: Copy 4 into node, then delete the original 4 (simple case).

BST in Python

```
class Node:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

class BinarySearchTree:
    def __init__(self):
        self.root = None

    def insert(self, value):
        if not self.root: self.root = Node(value)
        else: self._insert_recursive(self.root, value)

    def _insert_recursive(self, node, value):
        if value < node.value:
            if not node.left: node.left = Node(value)
            else: self._insert_recursive(node.left, value)
        else:
            if not node.right: node.right = Node(value)
            else: self._insert_recursive(node.right, value)
```

BST Insertions Can Produce an Unbalanced Tree

Claim. A Binary Search Tree (BST) built using naive insertions can become *highly unbalanced*.

Idea of the proof. Consider inserting the following sequence of keys:

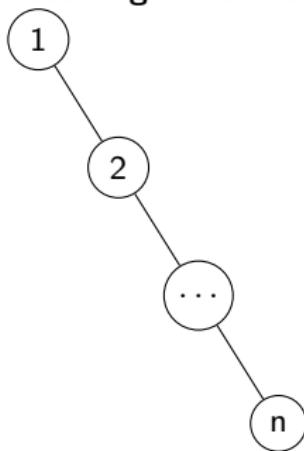
$$1, 2, 3, \dots, n$$

- Insert 1: becomes the root.
- Insert 2: since $2 > 1$, it becomes the right child of 1.
- Insert 3: since $3 > 1$ and $3 > 2$, it goes even further right.
- The same happens for all successive elements.

Key observation: When keys arrive in sorted order, at every step the new node is placed as the *right child of the deepest node*, creating a chain.

Example of Degenerate BST

Resulting structure:



Height of the resulting tree:

$$h = n - 1$$

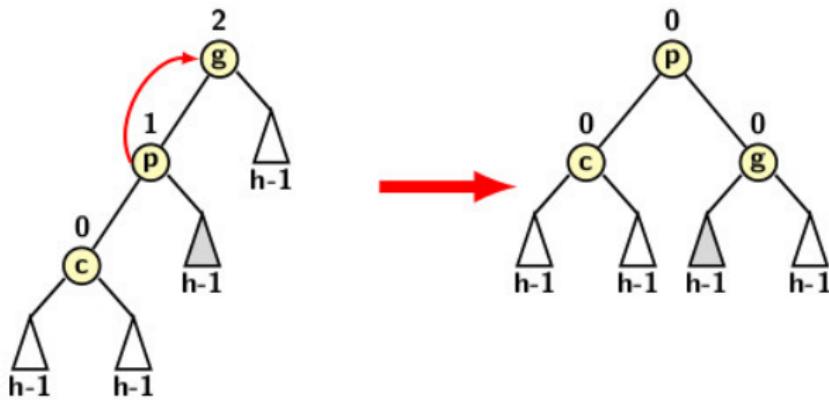
Search time in this BST:

$O(n)$ (same as a linked list)

Conclusion. A naive BST provides no guarantee of balance: the insertion order alone can force the tree to degenerate.

Balanced trees (AVL, Red-Black, etc.) avoid this problem by performing **rotations**.

Rotation



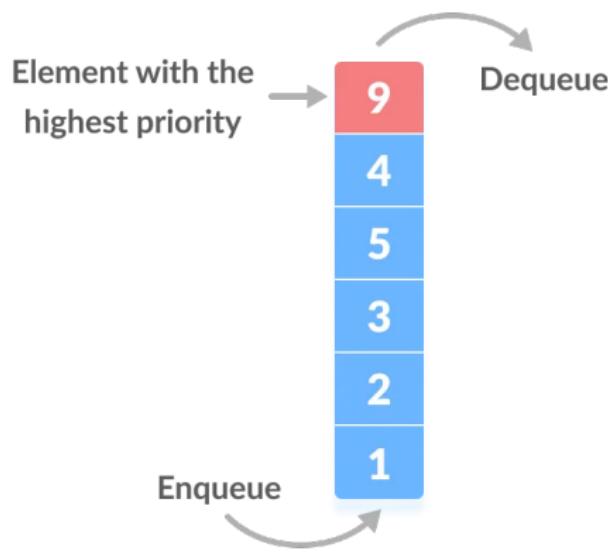
There are different type of **Balanced BST** that changes according to the way they implement this rotation in insertion and/or deletion (AVL, Red-Black, etc.).

Introduction to Heaps

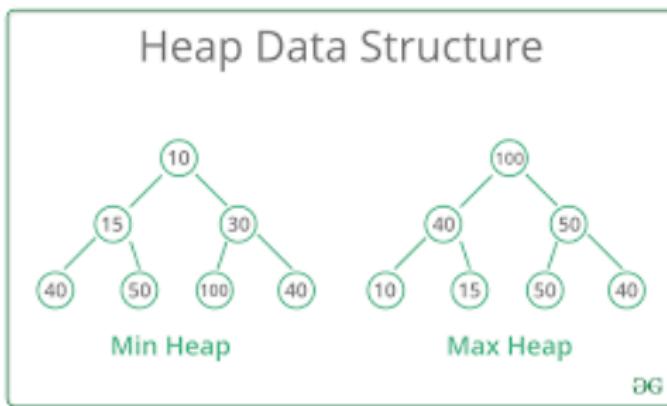
- A **heap** is a special kind of binary tree used to store elements with a quick access to the **minimum** or **maximum** value.
- It is a **complete binary tree**: all levels are full except possibly the last, which is filled left to right.
- It satisfies the **heap property**:
 - **Min-heap**: every node is \geq its parent (root contains the minimum).
 - **Max-heap**: every node is \leq its parent (root contains the maximum).
- Efficient operations:
 - **insert**: $O(\log n)$
 - **extract-min/extract-max**: $O(\log n)$
 - **peek**: $O(1)$
- Used in priority queues and in algorithms like **Heapsort**.

Heap application: Priority Queues

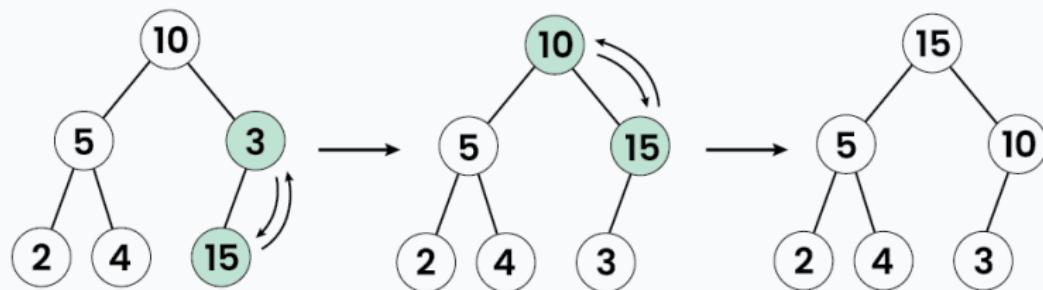
We are in a hospital and we have to visit patients according to the urgency of their situations.



Heap representation



Insertion in Heaps



Swap 15 and 3
as Parent cannot
be less than child

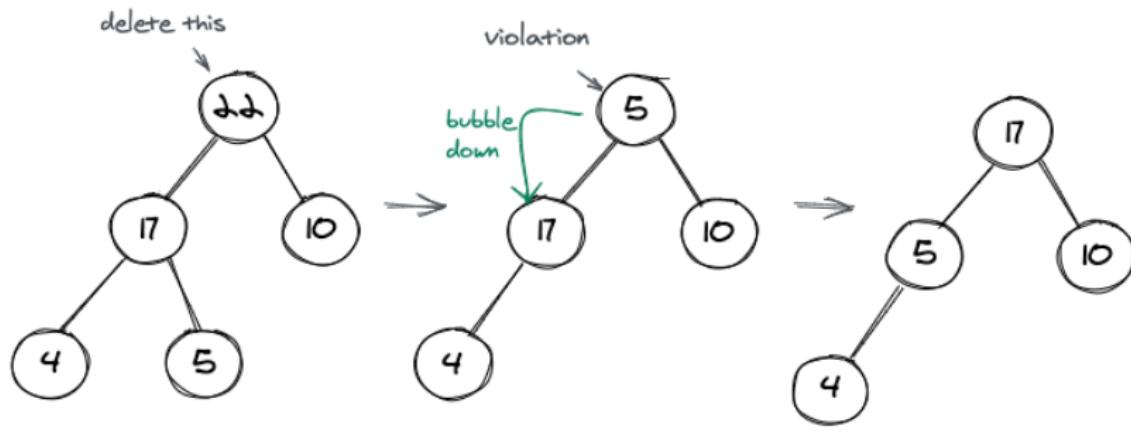
Swap 10 and 15
as Parent cannot
be less than child

Final Heap

Heapify Operations in Max Heap

26

Deletion in Heaps



Deletion in Heap

Heap in Python

```
import heapq

# Creating a heap
my_heap = [3, 1, 4, 1, 5, 9, 2, 6, 5]
heapq.heapify(my_heap)

print(my_heap) # Output: [1, 1, 2, 5, 3, 9, 4, 6, 5]

# Inserting into a heap
heapq.heappush(my_heap, 0)
print(my_heap) # Output: [0, 1, 1, 5, 2, 9, 4, 6, 5, 3]

# Extracting the smallest element
min_element = heapq.heappop(my_heap)
print(min_element) # Output: 0
```

What is next?

- Graph (another data structure)
- Points in more than one dimension (points in 2 dimensions, in 3 dimensions)