
Primitive data structure Linked List Stack and Queue Tree BST Heap

Principles of Computer Science II
Data Structure

Marco Zecchini

Sapienza University of Rome

Lecture 6

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 1 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Counting Frequencies Problem

Problem: Given a list of numbers, count how many times each
number appears.

Example:

[2, 3, 2, 5, 3, 2, 7, 5, 3] −→


2 : 3

3 : 3

5 : 2

7 : 1

We will solve this problem using two different data structures:

A list of pairs (number, count)

A dictionary

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 2 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Solution 1: Using a List

Idea: Maintain a list of pairs [number, count]. For each number
in the input list, search if it already exists; if yes, increase its count,
otherwise append it.

counts = []

for n in numbers:

found = False

for pair in counts:

if pair[0] == n:

pair[1] += 1

found = True

break

if not found:

counts.append([n, 1])

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 3 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Solution 2: Using a Dictionary

Idea: Use a dictionary that directly associates each number to its
count (remember: in a dictionary we access the value associated
with a key in constant time).

counts = {}

for n in numbers:

if n in counts:

counts[n] += 1

else:

counts[n] = 1

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 4 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Question

Which is better of the two in terms of time complexity? And why?

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 5 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Summary and Discussion

Same problem, different data structures:

Approach Data Structure Time Complexity

Naive counting List of pairs O(n2)
Efficient counting Dictionary O(n)

Key takeaway: Choosing the right data structure can drastically
improve algorithm performance, even when solving the same
problem.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 6 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Outline of the lecture

Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

...and combined them into two simple data structure: which
are these?

List and Dictionaries

In the rest of the lecture (and partially of the course), we will
see more complex data structure

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 7 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Outline of the lecture

Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

...and combined them into two simple data structure: which
are these?

List and Dictionaries

In the rest of the lecture (and partially of the course), we will
see more complex data structure

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 7 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Outline of the lecture

Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

...and combined them into two simple data structure: which
are these?

List and Dictionaries

In the rest of the lecture (and partially of the course), we will
see more complex data structure

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 7 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Outline of the lecture

Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

...and combined them into two simple data structure: which
are these?

List and Dictionaries

In the rest of the lecture (and partially of the course), we will
see more complex data structure

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 7 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

First: what is a Class in Python?

The Idea

A class is a template for creating objects. It defines the properties
(data) and behaviours (functions) that those objects will have.

Quick Intuition

Think of a class as a recipe. An object is a dish prepared from
that recipe.

Mini example

class Dog:

def __init__(self , name):

self.name = name

def bark(self):

print("Woof!")

my_dog = Dog("Fido")

my_dog.bark()

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 8 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List

Idea: A sequence of nodes, each containing a value and a
reference to the next node.

class Node:

def __init__(self, value):

self.value = value

self.next = None

Advantages:

Efficient insertions/deletions at both ends

Dynamic memory usage

Drawbacks:

Random access not possible (O(n))

Extra memory for pointers

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 9 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Singly Linked List — Structure

2

next

5

next

7

next ∅

head

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 10 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Singly Linked List — Structure

2

next

5

next

7

next ∅

head

Each node stores data and a pointer to next

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 10 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Insertion (between two nodes)

2

next

5

next

7

next ∅

head

Goal: insert 6 after node 5

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 11 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Insertion (between two nodes)

2

next

5

next

7

next

6

next

∅

head

1) Allocate new node X=6

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 11 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Insertion (between two nodes)

2

next

5

next

7

next

6

next

∅

head

2) Set X.next = 7

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 11 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Insertion (between two nodes)

2

next

5

next

7

next

6

next

∅

head

3) Set 5.next = X → insertion complete

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 11 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Deletion (bypass the target node)

2

next

5

next

7

next ∅

head

Goal: delete node 5 (have pointer to prev=2)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 12 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Deletion (bypass the target node)

2

next

5

next

7

next ∅

head

1) Identify prev (2) and target (5)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 12 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Deletion (bypass the target node)

2

next

5

next

7

next ∅

head

2) Set prev.next = target.next

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 12 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Linked List — Deletion (bypass the target node)

2

next

5

next

7

next ∅

head

3) (Optional) deallocate target

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 12 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Do we need Linked List in Python?

Question

In a framework like Python, do we actually need them?

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 13 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Do we need Linked List in Python?

Question

In a framework like Python, do we actually need them?

No, we actually don’t! We already have Lists that have the same
benefits: we essentially saw how Lists are implemented behind the
hood (or a way to do that)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 13 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack and Queue

Two fundamental ways to organize and manage elements:

Stack — LIFO (Last In, First Out)

The last element added is the first one to be removed.

Think of a stack of plates: you remove the top one first.

Useful when an algorithm needs to “go back”: recursion, undo
mechanisms, backtracking.

Queue — FIFO (First In, First Out)

The first element added is the first one to be removed.

Like a line at the supermarket: first come, first served.

Used when order must be respected: task scheduling, BFS,
event handling.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 14 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack and Queue (cont.)

Why are they important?

They impose a simple but powerful order on how elements are
processed.

They help control the flow of algorithms clearly and
predictably.

They mirror natural behaviors (stacks, lines) → easy to
understand, essential in computing.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 15 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Structure and Push

stack

top∅

Empty stack: top = null

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 16 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Structure and Push

stack

10

top

push(10): place at bottom, top → 10

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 16 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Structure and Push

stack

10

20

top

push(20): new item goes on top

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 16 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Structure and Push

stack

10

20

30

top

push(30): LIFO grows upwards

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 16 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Pop (Deletion)

stack

10

20

30

top

pop() removes the top element (30)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 17 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Pop (Deletion)

stack

10

20

30

top

After pop: top → 20

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 17 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack (LIFO) — Pop (Deletion)

stack

10

20

top

pop() again: top → 10

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 17 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Stack in Python

Minimal Stack implementation

class Stack:

def __init__(self):

self.items = []

def is_empty(self):

return len(self.items) == 0

def push(self , item):

self.items.append(item)

def pop(self):

if not self.is_empty ():

return self.items.pop()

raise IndexError("Stack is empty.")

def peek(self):

if not self.is_empty ():

return self.items [-1]

raise IndexError("Stack is empty.")

my_stack = Stack()

my_stack.push (10)

my_stack.push (20)

my_stack.push (30)

print(my_stack.pop()) # 30

print(my_stack.peek()) # 20

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 18 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Structure and Enqueue

queuefront

∅

back

∅

Empty queue: front = back = null

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 19 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Structure and Enqueue

queue

10

front

back

enqueue(10): first element sets both front and back

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 19 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Structure and Enqueue

queue

10 20

front back

enqueue(20): insert at back

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 19 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Structure and Enqueue

10 20 30

front back

enqueue(30): FIFO grows to the right

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 19 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Dequeue (Deletion)

10 20 30

front back

dequeue() removes the front element (10)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 20 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Dequeue (Deletion)

10 20 30

front back

After dequeue: front → 20

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 20 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue (FIFO) — Dequeue (Deletion)

10 20 30

front

back

dequeue() again: front → 30

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 20 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Queue in Python

Minimal Queue implementation

from collections import deque

class Queue:

def __init__(self):

self.items = deque()

def is_empty(self):

return len(self.items) == 0

def enqueue(self , item):

self.items.append(item)

def dequeue(self):

if not self.is_empty ():

return self.items.popleft ()

raise IndexError("Queue is empty.")

def peek(self):

if not self.is_empty ():

return self.items [0]

raise IndexError("Queue is empty.")

Using the queue

my_queue = Queue()

my_queue.enqueue("A")

my_queue.enqueue("B")

my_queue.enqueue("C")

print(my_queue.dequeue ()) # Output: A

print(my_queue.peek()) # Output: B

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 21 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Tree Data Structures

What is a Tree?

A tree is a hierarchical data structure composed of nodes
connected by edges. It represents relationships like those found in
family trees, organization charts, or file systems.

Why Trees?

They allow efficient representation of hierarchical relationships and
form the basis of:

Search and decision structures (e.g. Binary Search Trees)

Hierarchical data models (e.g. XML, file systems)

Optimization algorithms and parsing

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 22 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Tree Data Structures

What is a Tree?

A tree is a hierarchical data structure composed of nodes
connected by edges. It represents relationships like those found in
family trees, organization charts, or file systems.

Why Trees?

They allow efficient representation of hierarchical relationships and
form the basis of:

Search and decision structures (e.g. Binary Search Trees)

Hierarchical data models (e.g. XML, file systems)

Optimization algorithms and parsing

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 22 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Tree (cont.)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 23 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Tree application

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 24 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

N-ary Tree, Ternary Tree, Binary Tree

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 25 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Insertion in a binary tree

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 26 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Deletion in a binary tree

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 27 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Questions

Are the nodes sorted?

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 28 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Questions

Are the nodes sorted? How can I look for a specific key in a tree?

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 28 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Binary Search Trees (BST)

What is a Binary Search Tree?

A Binary Search Tree (BST) is a special type of binary tree where each node
satisfies:

left subtree values < node value < right subtree values

Each node has at most two children: a left child and a right child.

The structure maintains a sorted order, enabling efficient search.

Common operations: insertion, search, and deletion.

Why are BSTs useful?

They allow:

Searching in O(log n) time (on average)

Maintaining dynamic, sorted data

Forming the basis for balanced trees

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 29 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Binary Search Trees (BST)

What is a Binary Search Tree?

A Binary Search Tree (BST) is a special type of binary tree where each node
satisfies:

left subtree values < node value < right subtree values

Each node has at most two children: a left child and a right child.

The structure maintains a sorted order, enabling efficient search.

Common operations: insertion, search, and deletion.

Why are BSTs useful?

They allow:

Searching in O(log n) time (on average)

Maintaining dynamic, sorted data

Forming the basis for balanced trees

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 29 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST — Example

8

3 10

1 6 14

4 7 13

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 30 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST — Search for 7

8

3

10

1 6

14

4 7

13

Path compared: 8 → 3 → 6 → 7 (found).

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 31 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST — Insertion of 5

8

3

10

1 6

14

4 7

13

5

Insert path: 8 → 3 → 6 → 4 → (right) ⇒ 5.
M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 32 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST — Deletion of 3 (two children)

8

3

10

1 6

14

4 7

13

Step 1: Node 3 has two children. Inorder successor is 4.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 33 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST — Deletion of 3 (two children)

8

4

10

1 6

14

7

13

Step 2: Copy 4 into node, then delete the original 4 (simple case).

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 33 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST in Python

BST in Python

class Node:

def __init__(self , value):

self.value = value

self.left = None

self.right = None

class BinarySearchTree:

def __init__(self):

self.root = None

def insert(self , value):

if not self.root: self.root = Node(value)

else: self._insert_recursive(self.root , value)

def _insert_recursive(self , node , value):

if value < node.value:

if not node.left: node.left = Node(value)

else: self._insert_recursive(node.left , value)

else:

if not node.right: node.right = Node(value)

else: self._insert_recursive(node.right , value)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 34 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

BST Insertions Can Produce an Unbalanced Tree

Claim. A Binary Search Tree (BST) built using naive insertions
can become highly unbalanced.

Idea of the proof. Consider inserting the following sequence of
keys:

1, 2, 3, . . . , n

Insert 1: becomes the root.

Insert 2: since 2 > 1, it becomes the right child of 1.

Insert 3: since 3 > 1 and 3 > 2, it goes even further right.

The same happens for all successive elements.

Key observation: When keys arrive in sorted order, at every step
the new node is placed as the right child of the deepest node,
creating a chain.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 35 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Example of Degenerate BST

Resulting structure:

1

2

. . .

n

Height of the resulting tree:

h = n − 1

Search time in this BST:

O(n) (same as a linked list)

Conclusion. A naive BST provides no
guarantee of balance: the insertion
order alone can force the tree to
degenerate.
Balanced trees (AVL, Red-Black, etc.)
avoid this problem by performing
rotations.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 36 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Rotation

There are different type of Balanced BST that changes according
to the way they implement this rotation in insertion and/or
deletion (AVL, Red-Black, etc.).

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 37 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Introduction to Heaps

A heap is a special kind of binary tree used to store elements
with a quick access to the minimum or maximum value.

It is a complete binary tree: all levels are full except possibly
the last, which is filled left to right.

It satisfies the heap property:
Min-heap: every node is ≥ its parent (root contains the
minimum).
Max-heap: every node is ≤ its parent (root contains the
maximum).

Efficient operations:
insert: O(log n)
extract-min/extract-max: O(log n)
peek: O(1)

Used in priority queues and in algorithms like Heapsort.
M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 38 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Heap application: Priority Queues

We are in a hospital and we have to visit patients according to the
urgency of their situations.

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 39 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Heap representation

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 40 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Insertion in Heaps

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 41 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Deletion in Heaps

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 42 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

Heap in Python

Heap in Python

import heapq

Creating a heap

my_heap = [3, 1, 4, 1, 5, 9, 2, 6, 5]

heapq.heapify(my_heap)

print(my_heap) # Output: [1, 1, 2, 5, 3, 9, 4, 6, 5]

Inserting into a heap

heapq.heappush(my_heap , 0)

print(my_heap) # Output: [0, 1, 1, 5, 2, 9, 4, 6, 5, 3]

Extracting the smallest element

min_element = heapq.heappop(my_heap)

print(min_element) # Output: 0

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 43 / 44

Primitive data structure Linked List Stack and Queue Tree BST Heap

What is next?

Graph (another data structure)

Points in more than one dimension (points in 2 dimensions, in
3 dimensions)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 44 / 44

	Primitive data structure
	Linked List
	Stack and Queue
	Tree
	BST
	Heap

