Principles of Computer Science Il

Data Structure

Marco Zecchini

Sapienza University of Rome

Lecture 6

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 1 /44

Primitive data structure
9000000

Counting Frequencies Problem

Problem: Given a list of numbers, count how many times each
number appears.

Example:

[2,3,2,5,3,2,7,5,3] —

~N O wN
= N W W

We will solve this problem using two different data structures:
@ A list of pairs (number, count)

o A dictionary

M Zecchini e ey

Primitive data structure
0e00000

Solution 1: Using a List

Idea: Maintain a list of pairs [number, count]. For each number
in the input list, search if it already exists; if yes, increase its count,
otherwise append it.

counts = []
for n in numbers:
found = False
for pair in counts:
if pair[0] == n:
pair[1] += 1
found = True
break
if not found:
counts.append([n, 1])

M Zecchini S ST, Lo 3/

Primitive data structure
[e]e] lelelele]

Solution 2: Using a Dictionary

Idea: Use a dictionary that directly associates each number to its
count (remember: in a dictionary we access the value associated
with a key in constant time).

counts = {}
for n in numbers:
if n in counts:
counts[n] += 1
else:
counts[n] =1

M Zecchini S ST Lo 4/

Primitive data structure
[e]e]e] lelele]

Question

Which is better of the two in terms of time complexity? And why?J

M Zecchini S ST, Lectues 5/

Primitive data structure
0000000

Summary and Discussion

Same problem, different data structures:

Approach Data Structure Time Complexity
Naive counting List of pairs O(n?)
Efficient counting Dictionary O(n)

Key takeaway: Choosing the right data structure can drastically
improve algorithm performance, even when solving the same
problem.

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 6 / 44

Primitive data structure
00000e0

Outline of the lecture

@ Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

M Zecchini S ST, Lo 7/

Primitive data structure
00000e0

Outline of the lecture

@ Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

@ ...and combined them into two simple data structure: which
are these?

M Zecchini S ST, Lo 7/

Primitive data structure
00000e0

Outline of the lecture

@ Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

@ ...and combined them into two simple data structure: which
are these?

@ List and Dictionaries

M Zecchini S ST, Lo 7/

Primitive data structure
00000e0

Outline of the lecture

Until now, most of the times, we have always worked with
primitive data types (integer, float, string, char)...

...and combined them into two simple data structure: which
are these?

List and Dictionaries

In the rest of the lecture (and partially of the course), we will
see more complex data structure

M Zecchini S ST, Lo 7/

Primitive data structure
000000@

First: what is a Class in Python?

The Idea

A class is a template for creating objects. It defines the properties
(data) and behaviours (functions) that those objects will have.

Think of a class as a recipe. An object is a dish prepared from
that recipe.

Mini example

|

class Dog:
def __init__(self, name):
self .name = name

def bark(self):
print ("Woof!")

my_dog = Dog("Fido")
my_dog.bark ()

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 8 / 44

Linked List

Idea: A sequence of nodes, each containing a value and a
reference to the next node.

class Node:
def __init__(self, value):
self.value = value
self .next = None

Advantages:
e Efficient insertions/deletions at both ends
@ Dynamic memory usage

Drawbacks:
@ Random access not possible (O(n))

@ Extra memory for pointers

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 9 / 44

Linked List
0@000

Singly Linked List — Structure

head
2 [s [7
next — g next |— g next —» &

M Zecchini e T

Linked List
(o] Ielele)

Singly Linked List — Structure

head
2 N [7
next |— I next | next —» O

Each node stores data and a pointer to next

M Zecchini e T

Linked List
[e]e] lele]

Linked List — Insertion (between two nodes)

head

next |— g next |— g next (—» J

Goal: insert 6 after node 5

M Zecchini e T

data structure Linked List

[e]e] lele}

Linked List — Insertion (between two nodes)

head
2 E R
next — g next |— g next —» &
6
next

1) Allocate new node X=6

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 11 / 44

data structure

Linked List

[e]e] lele}

Linked List — Insertion (between two nodes)

M.Zecchini

head
2 N |7
next |— next next (—» J
1
1
1
1
1
1
I
6 |
1
next F--'
2) Set X.next = 7
Principles of Computer Science II: Data Structure Lecture 6

11/ 44

Linked List
00@00

Linked List — Insertion (between two nodes)

>

head
2 _ 5 o 7
next g next g next
6
next

M.Zecchini

3) Set 5.next

X — insertion complete

Lecture 6 11 / 44

Linked List
000@0

Linked List — Deletion (bypass the target node)

head
2 [5 |7
next — g next |— g next (—»

Goal: delete node 5 (have pointer to prev=2)

M Zecchini e T

Linked List
000@0

Linked List — Deletion (bypass the target node)

head
2 o 5 o 7
next g next next

M.Zecchini

1) Identify prev (2) and target (5)

_>®

Lecture 6 12 / 44

Linked List
[e]e]e] Jo]

Linked List — Deletion (bypass the target node)

head
2 N . 7
next g next

M.Zecchini

2) Set prev.next = target.next

_>®

Lecture 6 12 / 44

Linked List
[e]e]e] Jo]

Linked List — Deletion (bypass the target node)

head
2 7
next |— " next +—» J

3) (Optional) deallocate target

M Zecchini e T

Linked List
0000e

Do we need Linked List in Python?

In a framework like Python, do we actually need them?

M Zecchini e T

Linked List
0000e

Do we need Linked List in Python?

In a framework like Python, do we actually need them?

No, we actually don't! We already have Lists that have the same
benefits: we essentially saw how Lists are implemented behind the
hood (or a way to do that)

M Zecchini e T

Stack and Queue
©0000000

Stack and Queue

Two fundamental ways to organize and manage elements:

Stack — LIFO (Last In, First Out)
@ The last element added is the first one to be removed.
@ Think of a stack of plates: you remove the top one first.
@ Useful when an algorithm needs to “go back”: recursion, undo
mechanisms, backtracking.
Queue — FIFO (First In, First Out)
@ The first element added is the first one to be removed.
@ Like a line at the supermarket: first come, first served.

@ Used when order must be respected: task scheduling, BFS,
event handling.

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 14 / 44

Stack and Queue
0®000000

Stack and Queue (cont.)

Why are they important?

@ They impose a simple but powerful order on how elements are
processed.

@ They help control the flow of algorithms clearly and
predictably.

@ They mirror natural behaviors (stacks, lines) — easy to
understand, essential in computing.

M Zecchini e T

Stack and Queue
00®00000

Stack (LIFO) — Structure and Push

stack
5 < top

Empty stack: top = null

M Zecchini e T

Stack and Queue
00®00000

Stack (LIFO) — Structure and Push

stack

/ top

push(10): place at bottom, top — 10

10

M Zecchini e T

Stack and Queue
00®00000

Stack (LIFO) — Structure and Push

stack
top
push(20): new item goes on top
20
10

M.Zecchini

Lecture 6 16 / 44

Stack and Queue
00®00000

Stack (LIFO) — Structure and Push

stack

top

/ push(30): LIFO grows upwards
30

20

10

M Zecchini e T

Stack and Queue
000®0000

Stack (LIFO) — Pop (Deletion)

stack

top

/ pop() removes the top element (30)
30

20

10

M Zecchini e

Stack and Queue
000®0000

Stack (LIFO) — Pop (Deletion)

stack
top
After pop: top — 20
20
10

M.Zecchini

Lecture 6 17 / 44

Stack and Queue
000®0000

Stack (LIFO) — Pop (Deletion)

stack

top

pop() again: top — 10

10

M Zecchini e

Stack and Queue
00008000

Stack in Python

Minimal Stack implementatio

class Stack:
def __init__(self):
self.items = []
def is_empty(self):
return len(self.items) == 0
def push(self, item):
self .items.append(item)
def pop(self):
if not self.is_empty():
return self.items.pop()
raise IndexError("Stack is empty.")
def peek(self):
if not self.is_empty():
return self.items[-1]
raise IndexError("Stack is empty.")

my_stack = Stack()
my_stack.push (10)
my_stack.push (20)
my_stack.push (30)

print (my_stack.pop()) # 30
print (my_stack.peek()) # 20

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 18 / 44

Stack and Queue
00000800

Queue (FIFO) — Structure and Enqueue

front queue back

Empty queue: front = back = null

M Zecchini e T

Stack and Queue
00000800

Queue (FIFO) — Structure and Enqueue

back

front queue

10

enqueue(10): first element sets both front and back

M Zecchini e T

Stack and Queue
00000800

Queue (FIFO) — Structure and Enqueue

front back queue
y ¥
NE

enqueue(20): insert at back

M Zecchini e T

Stack and Queue
00000800

Queue (FIFO) — Structure and Enqueue

front back
| _ ¥
10 M 20 M 30

enqueue(30): FIFO grows to the right

M Zecchini e T

Stack and Queue
00000080

Queue (FIFO) — Dequeue (Deletion)

front back
| _ ¥
10 M 20 M 30

dequeue() removes the front element (10)

M Zecchini e

Stack and Queue
00000080

Queue (FIFO) — Dequeue (Deletion)

front back
L A
20 |

After dequeue: front — 20

M Zecchini e

Stack and Queue
00000080

Queue (FIFO) — Dequeue (Deletion)

back

front

30

dequeue() again: front — 30

M Zecchini e

Stack and
0000000

Queue in Python

Minimal Queue implementati

from collections import deque
class Queue:
def __init__(self):
self.items = deque ()

def is_empty(self):
return len(self.items) == 0
def enqueue(self, item):
self.items.append(item)
def dequeue (self):
if not self.is_empty():
return self.items.popleft ()
raise IndexError ("Queue is empty.")
def peek(self):
if not self.is_empty():
return self.items[0]
raise IndexError ("Queue is empty.")

Using the queue

my_queue = Queue ()
my_queue.enqueue ("A")

my_queue .enqueue ("B")

my_queue .enqueue ("C")

print (my_queue.dequeue()) # Output: A
print (my_queue.peek()) # Output: B

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 21 / 44

Tree
0000000

Tree Data Structures

What is a Tree?

A tree is a hierarchical data structure composed of nodes
connected by edges. It represents relationships like those found in
family trees, organization charts, or file systems.

Family Tree

M.Zecchini Lecture 6 22 / 44

Tree
©000000

Tree Data Structures

What is a Tree?

A tree is a hierarchical data structure composed of nodes
connected by edges. It represents relationships like those found in
family trees, organization charts, or file systems.

They allow efficient representation of hierarchical relationships and
form the basis of:

@ Search and decision structures (e.g. Binary Search Trees)
@ Hierarchical data models (e.g. XML, file systems)

e Optimization algorithms and parsing

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 22 / 44

Tree
(o] lelelele]e]

Tree (cont.)

‘ Tree Data Structure ‘

Root _Key

" (Y Edge Level 0

Parent

: Level 1
| Subtree ——> e) ‘

Height of y Level 2
the tree i

Level3

¢ Level 4

Leéf Nodes

M.Zecchini

Lecture 6 23 / 44

Tree
[e]e] lelele]e]

Tree application

decision nodes root node

salary at least
$50,000

commute more
than 1 hour

decline
offer

offers free
coffee

decline
offer
no
leaf nodes
decline
offer

Decision Tree:
Should | accept a new
job offer?

accept
offer

M.Zecchini

Lecture 6 24 / 44

Tree
[e]e]e] Jelele]

N-ary Tree, Ternary Tree, Binary Tree

(on the basis of number of children)

e

M.Zecchini

Lecture 6 25 / 44

Tree
[e]e]ele] lele]

Insertion in a binary tree

Binary Tree Binary Tree after Insertion

Insertion in Binary Tree

M.Zecchini

Lecture 6 26 / 44

Tree

0000080

Deletion in a binary tree

(13) (13)
12) (0 o) (o
@ @ © @O W O

Node to be deleted is 12 Replacing 12 with deepest node

13)
o) (10

(&) 19Ge

Deleting the deepest node

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 27 / 44

Tree
000000e

Questions

Are the nodes sorted? J

M Zecchini e e

Tree
000000e

Questions

Are the nodes sorted? How can | look for a specific key in a tree? J

M Zecchini e T

BST
€00000000

Binary Search Trees (BST)

What is a Binary Search Tree?

A Binary Search Tree (BST) is a special type of binary tree where each node
satisfies:

left subtree values < node value < right subtree values

@ Each node has at most two children: a left child and a right child.
@ The structure maintains a sorted order, enabling efficient search.

@ Common operations: insertion, search, and deletion.

M Zecchini e T

BST
€00000000

Binary Search Trees (BST)

What is a Binary Search Tree?

A Binary Search Tree (BST) is a special type of binary tree where each node
satisfies:

left subtree values < node value < right subtree values
@ Each node has at most two children: a left child and a right child.

@ The structure maintains a sorted order, enabling efficient search.

@ Common operations: insertion, search, and deletion.

Why are BSTs useful?

They allow:

@ Searching in O(log n) time (on average)
@ Maintaining dynamic, sorted data

@ Forming the basis for balanced trees
v

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 29 / 44

BST
[o] IeleleleYelele]

BST — Example

M.Zecchini

Lecture 6 30 / 44

BST
[e]e] IeleleYelele]

BST — Search for 7

(8)—(19

(3) (14
g W @

OBERG

Path compared: 8 -3 — 6 — 7 (found).

M.Zecchini

Lecture 6 31 /44

BST
000800000

BST — Insertion of 5

/@\ (14
I R @
N,

Insert path: 8 -3 — 6 — 4 — _(right) = 5.
M.Zecchini

Lecture 6 32 / 44

BST
[e]e]ele] ToYelele]

BST — Deletion of 3 (two children)

G@
X

Step 1: Node 3 has two children. Inorder successor is 4.

M.Zecchini

Lecture 6 33 / 44

BST
[e]e]ele] ToYelele]

BST — Deletion of 3 (two children)

@ @\;9

Step 2: Copy 4 into node, then delete the original 4 (simple case).

M.Zecchini

Lecture 6 33 / 44

BST
000008000

BST in Python

BST in Py

class Node:
def __init__(self, value):
self.value = value
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self):
self.root = None

def insert(self, value):
if not self.root: self.root = Node(value)
else: self._insert_recursive(self.root, value)

def _insert_recursive(self, node, value):
if value < node.value:
if not node.left: node.left = Node(value)
else: self._insert_recursive(node.left, value)
else:
if not node.right: node.right = Node(value)
else: self._insert_recursive(node.right, value)

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 34 / 44

BST
000000000

BST Insertions Can Produce an Unbalanced Tree

Claim. A Binary Search Tree (BST) built using naive insertions
can become highly unbalanced.

Idea of the proof. Consider inserting the following sequence of
keys:
1,2,3,...,n

Insert 1: becomes the root.

°
@ Insert 2: since 2 > 1, it becomes the right child of 1.

@ Insert 3: since 3 > 1 and 3 > 2, it goes even further right.
°

The same happens for all successive elements.

Key observation: When keys arrive in sorted order, at every step
the new node is placed as the right child of the deepest node,
creating a chain.

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 35/ 44

BST
000000000

Example of Degenerate BST

Height of the resulting tree:

Resulting structure:

h=n-1
Search time in this BST:

O(n) (same as a linked list)

Conclusion. A naive BST provides no
guarantee of balance: the insertion
order alone can force the tree to
degenerate.

Balanced trees (AVL, Red-Black, etc.)
avoid this problem by performing
rotations.

M.Zecchini

Lecture 6 36 / 44

BST
00000000

Rotation

h-1 h-1 h-1 h-1

There are different type of Balanced BST that changes according
to the way they implement this rotation in insertion and/or
deletion (AVL, Red-Black, etc.).

M Zecchini e e

Introduction to Heaps

@ A heap is a special kind of binary tree used to store elements
with a quick access to the minimum or maximum value.

o It is a complete binary tree: all levels are full except possibly
the last, which is filled left to right.

o It satisfies the heap property:
e Min-heap: every node is > its parent (root contains the
minimum).
o Max-heap: every node is < its parent (root contains the
maximum).

o Efficient operations:
o insert: O(log n)
e extract-min/extract-max: O(log n)
e peek: O(1)

@ Used in priority queues and in algorithms like Heapsort.

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 38 / 44

Heap
(o] lelelele]e]

Heap application: Priority Queues

We are in a hospital and we have to visit patients according to the
urgency of their situations.

Element with the Dequeue
highest priority

Enqueue

M Zecchini e T

Heap
[e]e] lelele]e]

Heap representation

Heap Data Structure

(idﬁ
N
5 !j-l}.\\ \
(s0) (s0) (o (a0) Qo) (s 5oy (a0)
e aub et LA b,
Min Heap Max Heap
G
L J

M Zecchini e e

Heap
0008000

Insertion in Heaps

0\
au N X
ii — & ®—F B

dod dod

/ \J &/ k/ =/

Swap 15 and 3 Swap 10 and 15 :
as Parent cannot as Parent cannot AT R E3E
be less than child be less than child

Heapify Operations in Max Heap

M.Zecchini Principles of Computer Science II: Data Structure Lecture 6 41 / 44

Heap
[e]e]ele] lele]

Deletion in Heaps

violosion

j)eje:ﬁcm in Heap

M.Zecchini

Lecture 6 42 / 44

Heap
0000080

Heap in Python

import heapq

Creating a heap
my_heap = [3, 1, 4, 1, 5, 9, 2, 6, 5]
heapq.heapify (my_heap)

print (my_heap) # Output: [1, 1, 2, 5, 3, 9, 4, 6, 5]

Inserting into a heap

heapq.heappush (my_heap, 0)

print (my_heap) # Output: [0, 1, 1, 5, 2, 9, 4, 6, 5, 3]
Extracting the smallest element

min_element = heapq.heappop(my_heap)
print (min_element) # Output: O

M.Zecchini Principles of Computer Science Il: Data Structure Lecture 6 43 / 44

Heap
000000

What is next?

e Graph (another data structure)

@ Points in more than one dimension (points in 2 dimensions, in
3 dimensions)

M Zecchini e e

	Primitive data structure
	Linked List
	Stack and Queue
	Tree
	BST
	Heap

