Principles of Computer Science Il

Algorithms for Biolnformatics

Marco Zecchini

Sapienza University of Rome

Lecture 2

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture2 1 /51

Algorithms for Biolnformatics
0000000

Pebble Game

@ Game played in turns by 2 players.
@ Two piles of equal number of pebbles.

@ Each turn a player may either
o take 1 pebble from a single pile, or
o take 1 pebble from both piles.

@ The player that takes the last pebble wins.

M. Zecchini S AR S BTSN L2 251

Algorithms for Biolnformatics
0e00000

Best Strategy for Winning the Pebble Game

@ Does the first player always have an advantage?
@ Let's consider the most simplified version.

e Pebbles = 2 — we call this the 2 x 2 game.

e Is there a winning strategy?

e What is the winning strategy?

M. Zecchini S AR BTSN L2 351

Algorithms for Biolnformatics
[e]e] lelelele]

Generaled Strategy for Winning the Pebble Game

@ Can we generalize the strategy of the 2 x 2 game?
@ What about the 3 x 3 game?

o Consider different game sequences.
o Consider the n x n game.

e Is there only one winning strategy?

e How easy it is to describe our strategy?

e Quality of solution.

M. Zecchini S AR T BTSN L2 451

Algorithms for Biolnformatics
[e]e]e] lelele]

We build a matrix for all game combinations keeping track of the
winning moves:

© 1 take one pebble from pile A.

@ < take one pebble from pile B.

© X take one pebble from each pile.

@ * ignore move.
0O 1 2 3 4 5 6 7 8 9 10

© 0O ~NO O P~ WDN K+ O

I

M. Zecchini Lecture2 5 /51

Algorithms for Biolnformatics
0000e00

@ The first player always loses the 2 x 2.

@ Clearly also for 0 x 2, 0 x 4, ...

@ Can we generalize for all games where each pile has an even
number of pebbles?

0 1 2 3 4 5 6 7 8 9 10

* * * * * *

© 0O ~NOOT P~ WN K+ O

=
o
*

M. Zecchini S AR BT L2 6 /51

Algorithms for Biolnformatics
0000e00

@ The first player always loses the 2 x 2.

@ Clearly also for 0 x 2, 0 x 4, ...

@ Can we generalize for all games where each pile has an even
number of pebbles?

o 1 2 3 4 5 6 7 8 9 10
0 | * * * * * *
1
2 | * * * * * *
3
4 | * * * * * *
5
6 | * * * * * *
7
g | * * * * * *
9
10 | * * * * * *

M. Zecchini S AR BT L2 6 /51

Algorithms for Biolnformatics
00000e0

@ Only 1 optionforall0x1,0x3,...and1x0,3x0,...

0o 1 2 3 4 5 6 7 8 9 10
0 | * * * * * *
1
2 | * * * * * *
3
4 | * * * * * *
5
6 | * * * * * *
7
8 | * * * * * *
9
10 | * * * * * *

M. Zecchini S AR S BTSN L2 751

Algorithms for Biolnformatics
00000e0

@ Only 1 optionforall0x1,0x3,...and1x0,3x0,...

0 1 2 3 4 5 6 7 8 9 10
0 | ¥ < * . * . *x . * . %
LT
o | * * * * * *
37
4 | * * * * * *
507
6 | * * * * * *
[
g | * * * * * *
9 |1
10 | * * * * * *

M. Zecchini S AR S BTSN L2 751

Algorithms for Biolnformatics
00000e0

@ Only 1 optionforall0x1,0x3,...and1x0,3x0,...
e Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

0 1 2 3 4 5 6 7 8 9 10
' R S S S
R R S S
50t 1 1t 1
A
olt 1t 1t 17
10 [* « % « * — * 0k X

M. Zecchini

Lecture2 7 /51

Algorithms for Biolnformatics
00000e0

@ Only 1 optionforall0x1,0x3,...and1x0,3x0,...

e Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

e What about the other rows/columns?

6 1 2 3 4 5 6 7 8 9 10
0 | ¥ <« * o *x o x . x . *
L D N A N A N O N N
2 * — * — * — * — * — *
ST TN TN TN TN T
4| * — F o K X x X
SN TN TN TN TN T
6 * ok — ¥ ¥ L ok — *
TN TN TN TN TN T
8 * Kk — ¥ ¥ Lk — *
ST N TN TN TN TN T
10 | * « * — * L x L ox . %

M. Zecchini

Lecture2 7 /51

Algorithms for Biolnformatics
000000e

An algorithmic approach for winning the Pebble Game

@ How can we build the matrix for any game size, e.g., 20 x 20
@ What is the algorithm for winning the game?

M. Zecchini S A T B L2 8/ 51

Algorithms for Biolnformatics
000000e

An algorithmic approach for winning the Pebble Game

@ How can we build the matrix for any game size, e.g., 20 x 20

@ What is the algorithm for winning the game?

@ Why in the world do | care about a game with two nerdy
people and a bunch of rocks? I'm interested in biology, and
this game has nothing to do with me

M. Zecchini S A T B L2 8/ 51

Algorithms for Biolnformatics
000000e

An algorithmic approach for winning the Pebble Game

How can we build the matrix for any game size, e.g., 20 x 20
What is the algorithm for winning the game?

Why in the world do | care about a game with two nerdy
people and a bunch of rocks? I'm interested in biology, and
this game has nothing to do with me

It is the sequence alignment problem.

The computational idea used to solve both problems is the
same.

M. Zecchini S A T B L2 8/ 51

What is an algorithm?
An algorithmic approach for winning the Pebble Game

@ How can we build the matrix for any game size, e.g., 20 x 20

@ What is the algorithm for winning the game?

@ Why in the world do | care about a game with two nerdy
people and a bunch of rocks? I'm interested in biology, and
this game has nothing to do with me

@ It is the sequence alignment problem.

@ The computational idea used to solve both problems is the
same.

@ We need to understand how algorithms work.

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture2 8 /51

Algorithms for Biolnformatics
0000000000000 0

Methodology of solving a computational problem

@ What is the problem at hand ?
o Identify & Understand assumptions.
What is our goal ?
Identify similar problems/solutions in the bibliography
What are the theoretical foundation ?
Can we formulate the problem in a unambiguous and precise
way ?
@ What is the Input that we have 7
e Do we have enough data or should we try to collect?
e Open data sets ?
e Can we synthesize input data ?
@ What is the expected Output ?

M. Zecchini " Principles of Computer Science II: Algorithms for Biolnformatia | Lecture2 9 /51

Algorithms for Biolnformatics
0e000000000000

Solution Sketch

@ Do we have a rough idea of a solution ?
@ Do we have identified an approach to solving the problem 7
e think again !
e go through the definition — maybe we overlooked something ?
@ Write down a solution sketch
o check if it adheres to the initial assumptions
e can you try it out with a small input ?
Is the solution correct ? can we provide some arguments ?
What is the performance of the solution ?
Can we think of a more efficient solution ?

M. Zecchini S AR S BT SE Lecue2 10/ 51

Algorithms for Biolnformatics
00e00000000000

Implement the first version

@ Pick your programming language of choice.
@ Implement your solution

o No need to try to make it elegant / fast.
@ Get some input data

o Open datasets

e Small size
o Limited Evaluation

e does it work ?

e do you need to make any modifications ?

e are there special cases that you missed ?

M. Zecchini S AR S BT Lecue2 1151

Algorithms for Biolnformatics
0008000000000 0

Iterative approach

@ Step-by-step development
e Continuous development.
o Agile methodology.
@ Identify issues in previous version
o Code beautification.
o Bug fixes.
e Performance improvements.
e Additional functionalities.
@ Implement improvements
o Make sure code is always clean + easy to maintain.
o Keep detailed records of changes.
o Always keep history of source code evolution.
@ Performance Evaluation
e bigger input.
e scalability 7

M. Zecchini S AR S BTSN Lecue2 12/ 51

Algorithms for Biolnformatics
0000e000000000

Theoretical — Practical Approach Cycle

Theoretical Results

Deployment

Experimental
Evaluation

Algorithm

| Engineering
Implementation

M. Zecchini S AR S BT E Lecue2 13 /51

Algorithms for Biolnformatics
0000080000000 0

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

M. Zecchini S AR S BT Lecue2 14/ 51

Algorithms for Biolnformatics
0000080000000 0

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

A well-formulated problem is unambiguous and precise, leaving no
room for misinterpretation.

M. Zecchini S AR S BT Lecue2 14/ 51

Algorithms for Biolnformatics
0000080000000 0

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

A well-formulated problem is unambiguous and precise, leaving no
room for misinterpretation.

An algorithm is the method to translate the inputs into the
outputs.

M. Zecchini S AR S BT Lecue2 14/ 51

Algorithms for Biolnformatics
000000e0000000
Approacl

What is pseudocode? (and why we use it)

@ Goal: Describe an algorithm precisely without committing to
a programming language.
o Key primitives:
e Assignment: a < b
Arithmetic: +, —, -, /,
Conditionals: if A is true B else C
Loops: for i « atob B / while A is true B
Arrays: a = (a_1l,...,amn), access a_i
Subroutines: named blocks with arguments and return

@ How to read it: treat each line as an atomic step;
indentation = block structure.

@ How to use it: first verify correctness by reasoning on
inputs/outputs

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 15 / 51

Algorithms for Biolnformatics
0000000800000 0
Approacl

Examples in pseudocode

MAX(a, b): returns the ADDUNTIL(b): smallest i s.t.
larger number 1+24+---4+i>b
if a < b i<-1

return b total <- i
else while total <= b

return a i<-1i+1

total <- total + i
return i

Example:
MAX(7, 3) — returns 7
MAX(-1, 4) — returns 4 Example: ADDUNTIL(25) — returns

7 (since 14+243+4+45+6 =21 <

25, 1+...4+7 = 28 > 25)
Observation: Pseudocode describes the algorithm’s logic independently of
any programming language — indentation shows structure and flow.

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 16 / 51

Algorithms for Biolnformatics
00000000 e00000

Is this algorithm good?

@ We have identified a problem...

@ ... we came out with an algorithm that solve the problem (our
course)...

@ ... but does the algorithm solve the problem? and at
which cost? Are there better solutions? (again, our
course)

M. Zecchini S AR S BT Lecue2 17/ 51

Algorithms for Biolnformatics
000000000 e0000

Does the algorithm solve the problem?

AN INTRODUCTION TO
BIOINFORMATICS ALGORITHMS

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.3 - 2.4, the US changing problem.

M. Zecchini S AR S BT E Lecue2 18/ 51

Algorithms for Biolnformatics
000000000 0e000

Does the algorithm solve the problem?

USCHANGE(M)
United States Change Problem: T re=M
Convert some amount of money into the fewest number of coins. 2 ge=r/25
3 r—r-25-¢q
Input: An amount of money, M, in cents. 4 d—r/10
Output: The smallest number of quarters g, dimes d, nickels 5 rer _ 10-4d
n, and pennies p whose values add to M (ie., 25¢ + 10d + 6 ne—r/s
in+p= M and g +d+ n + pis as small as possible). 7 re—r—->5mn
8 p—r
9 return (¢, d, n,p)

M. Zecchini S AR S B E Lecue2 19/ 51

Algorithms for Biolnformatics
0000000000080

Does the algorithm solve the problem?

Change Problem:

Convert some amount of money M into given denominations, using the

i - BETTERCHANGE(M, ¢, d)
smallest possible number of coins.

1 r—M
2 for k— ltod
Input: An amount of money M, and an array of d denom- 3 . ;

. N - . - i — T/
inations ¢ = (ej,¢2,...,¢4), in decreasing order of value 4 }‘ . / A .
(e1 > e > - > ca). T .I Cl .r;?.

5 return (iy,i2,..., id)

Output: A list of d integers 1y iy, ..., iy such that e;i) +egia+
<ot egig=M,and i) +i, +--- +1i, is as small as possible.

M. Zecchini S AR BT E Lecue2 20/ 51

Algorithms for Biolnformatics
00000000000 0e0

Does the algorithm solve the problem?

BETTERCHANGE(M, ¢, d)
If M =40 and c = (25,10,5,1), 1 r=M
BetterChange returns (1,1,1,0) while i for i —ltod
(2,0,0,0) would be the right solution. 4 o (f\k,jk
5 return (i ia, ..., id)

M. Zecchini S AR S BTSN L2 21 /51

Algorithms for Biolnformatics
0000000000000 e

Does the Algorithm solve the problem?

BRUTEFORCECHANGE(M, ¢, d)
1 smallestNumberO fCoins — oo
2 for each(i..... iq) from (0, ..., 0)to (M/jeyq,...,] M/feq)

3 valueO fCoins — Zle 1 Ck
4 if valueOfCoins = M
5 numberQ fCoins «— Zfﬂ ip

6 if numberOfCoins < smallest NumberO fCoins
7 smallest NumberO fCoins — numberO fCoins
8 bestChange — (i, 15, ..., ig)

9 return (bestChange)

M. Zecchini S AR S BTSN Lecue2 2/ 51

Algorithms for Biolnformatics
0000000000000 e

Does the Algorithm solve the problem?

BRUTEFORCECHANGE(M, ¢, d)
1 smallestNumberO fCoins —
2 for each(iy,.... iq) from (0, ..., 0)to (M/ey,....] M/eq)

3 valueO fCoins — Zle 11k
4 if valueOfCoins = M
5 numberO fCoins — Zle iy

6 if numberOfCoins < smallest NumberO fCoins
7 smallest NumberO fCoins — numberQO fCoins
8 bestChange — (¢,14,..., i)

9 return (bestChange)

Yes

M. Zecchini S AR S BTSN Lecue2 2/ 51

Algorithms for Biolnformatics
0000000000000 e

Does the Algorithm solve the problem?

BRUTEFORCECHANGE(M, ¢, d)
1 smallestNumberO fCoins —
2 for each(iy,.... iq) from (0, ..., 0)to (M/ey,....] M/eq)

3 valueO fCoins — Zle 11k
4 if valueOfCoins = M
5 numberO fCoins — Zle iy

6 if numberOfCoins < smallest NumberO fCoins
7 smallest NumberO fCoins — numberQO fCoins
8 bestChange — (¢,14,..., i)

9 return (bestChange)

Yes but at which cost?

M. Zecchini S AR S BTSN Lecue2 2/ 51

Complexity of Algorithms
[JeJele]

Measuring Performance

@ Performance of an algorithm?
Speed/Computational Time
Memory/Space
Robustness/Failures
Network /Communication
Consumption/Energy

@ How can we measure the speed/memory/robustness/. . . of an
algorithm?

@ How much performance degrades when the amount of input
data increases?

M. Zecchini S AR S BT E Lecue2 23 /51

Complexity of Algorithms
0@00

Is not CPU enough?

Microprocessor clock speed
Microprocessor clock speed measures the number of pulses per second generated by an oscillator that sets the
tempo for the processor. It is measured in hertz (pulses per second)

28.75 billion Hz World

10 billion Hz
1 billion Hz
100 million Hz

10 million Hz

1976 1980 1985 1990 1995 2000 2005 2010 2016

Source: Ray Kurzweil (2005, updated to 2016). The Singularity Is Near: When Humans Transcend Biology. ccey

M. Zecchini S AR S BTSN Lecue2 24 /51

Complexity of Algorithms
0@00

Is not CPU enough?

Microprocessor clock speed
Microprocessor clock speed measures the number of pulses per second generated by an oscillator that sets the
tempo for the processor. It is measured in hertz (pulses per second).

28.75 billion Hz World

10 billion Hz
1 billion Hz
100 million Hz

10 million Hz

1976 1980 1985 1990 1995 2000 2005 2010 2016

Source: Ray Kurzweil

05, updated to 2016). The Singularity Is Near: When Humans Transcend Biology. ccey

No! We want to be independent

M. Zecchini S AR S BTSN Lecue2 24 /51

Complexity of Algorithms
[e]e] o]

Computational Time Complexity

Computational Complexity

Describes the change in the runtime of an algorithm, depending on
the change in the input data’s size.

@ Measures the speed of an algorithm.
@ How much additional time it requires when the amount of
input data increases.
@ Examples:
e How much longer does it take to find an element within an
unsorted array when the size of the array doubles?
e How much longer does it take to find an element within a
sorted array when the size of the array doubles?

M. Zecchini S AR S BTSN Lecue2 25 /51

Complexity of Algorithms
[e]e]e]]

Space Complexity

Computational Complexity

Describes the requirements in terms of memory of an algorithm,
depending on the size of the input data.

@ Measures the memory requirements of an algorithm.
@ Without considering the size of the input data.
o Additional memory is used by:

o Helper variables within loops.

e Temporary data structures.
o Call stack.
o

M. Zecchini S AR S BTSN Lecue2 26 /51

Complexity of Algorithms
000000000000

Complexity Classes — Big O Notation

We organize algorithms into Complexity Classes

A complexity class is noted using the Bachmann-Landau
symbol O (“big O")

Let f the function to be estimated

Let g the comparison function

We write f(x) = O (g(x)) as x — oo

f is bounded above by g (up to constant factor)
asymptotically.

We do not measure the exact running time rather we classify
the behaviour when n is sufficiently large.

M. Zecchini S AR S BT L2 27 /51

Complexity of Algorithms
0e0000000000
omplexity Classes

Complexity Classes — Asymptotic behaviour

@ An algorithm may contain sub-components of different
complexity.
@ For large inputs, the behaviour will be dominated by the part
of the complexity that grows fastest.
o Complexity function g(n) = 100 x n? + 10000 x n + 840
grows like O(n?)
o Complexity function g(n) = 0.33 x n® grows like O(n®)
e If f(x) is a sum of several terms: we keep the one with the
largest growth rate.
e If f(x) is a product of several factors, any constants can be
omitted.

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 28 /51

Complexity of Algorithms
000000000000

Constant Time — O(1)

@ Pronounced: “Order 1", “O of 1", “big O of 1”
@ The runtime is constant.
@ Independent of the number of input elements n.

@ Examples
o Accessing a specific element of an array of size n.

e Inserting an element at the beginning of a list.

— 0O(1)

Complexity

Input Size (n)

M. Zecchini S AR S BTSN Lecue2 29/ 51

Complexity of Algorithms
000800000000

Linear Time — O(n)

@ Pronounced: “Order n”, “O of n”, "big O of n"
@ Runtime grows linearly with the number of input elements n.
@ If n doubles, then the runtime approximately doubles, too.

@ Examples
e Finding a specific element in an array of size n.

e Summing up all elements of an array.

—— 0O(n)

Complexity

Input Size (n)

M. Zecchini S AR S BT Lecue2 30/ 51

Complexity of Algorithms
0000e0000000

Quadratic Time — O(n?)

@ Pronounced: “Order n squared”, "“O of n squared”, “big O of

n squared”
@ Runtime grows linearly to the square of the number of input

elements n.
@ If n doubles, then the runtime approximately quadruples.

@ Examples
o Simple sorting algorithms (e.g., Insertion Sort).

— 0o(n?)

Complexity

Input Size (n)

M. Zecchini S AR S BT L2 31 /51

Complexity of Algorithms
000008000000

Logarithmic Time — O(log n)

@ Pronounced: “Order log n", "“O of log n”, “big O of log n”
@ Runtime increases by a constant amount when the number of

input elements n doubles.

@ Examples
e Binary search.

—— O(log n)

Complexity

Input Size (n)

M. Zecchini e e I

Complexity of Algorithms
000000800000

Big O Notation Order

@ O(1) — constant time
e O(log n) — logarithmic time
e O(n) — linear time
° (’)(nlog n) — quasilinear time
e O(n?) - quadratic time
— 0O(n)
— 0O(1)
— om
. —— O(log n)
g
——

Input Size (n)

M. Zecchini S AR S BT E Lecue2 33 /51

Complexity of Algorithms
0000000e0000

Other Complexity Classes

O(n™) - polynomial time
O(2") — exponential time
O(n!) — factorial time

— O(n)
—— 02"
— o(n3)
— 0O(n!)

Complexity

Input Size (n)

M. Zecchini e e BT

Complexity of Algorithms

000000000000 e000

omplexity Classes

Example: SUMINTEGERS (n) — code & complexity
side-by-side

Pseudocode Complexity analysis
SUMINTEGERS (n) ° The loop runs exactly n
times.
sum <- 0

@ Each iteration performs:

e one addition,
e one assignment.

for i <- 1 ton
sum <- sum + i

return sum
@ Total number of basic

Task: Compute 1 +2+---+n operations: proportional to
using a loop. n.
o Time:

T(n)=c-n+k=0(n)
e Space: S(n) = O(1) (only
two variables).

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 35 /51

Complexity of Algorithms
000000000800
omplexity Classes

Example: ADDUNTIL(b) — code & complexity side-by-side

Pseudocode Complexity analysis
ADDUNTIL (b) o After k |terat|ons:k(k)
i< 1 L+24 k==
total <- i @ Loop stops at the smallest
hile total <= Db k(k+1
whe hora kwith KD
i1<-1i+1
total <- total + i @ Solve the inequality:
return i K>+ k—2b>0= k=~
V8b+1-1
Task: return the smallest i such 2 -
that 14+2+---4+i>b. @ Therefore, the number of

iterations is O(v/b) and

each iteration is O(1).
o Time: T(b) = O(Vb)

Space: S(b) = O(1).

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 36 / 51

omplexity Classes
Little-oh and Big-Theta notations

o We write f(x) = o(g(x)) — read “f(x) is little-oh of g(x)"
o g(x) grows much faster than f(x)
e f is dominated by g asymptotically.
e O has to be true for at least one constant M, little-o holds for
every postivie constant €, however small.
o We write f(x) = © (g(x)) — read “f(x) is big-theta of g(x)"
e f is bounded both above and below by g asymptotically.
o Consider T(n) = 73n3 + 22n? + 58, all the following are
generally acceptable:
o T(n) = O(n') - grows asymptotically no faster than n'
o T(n) = O(n®) — grows asymptotically no faster than n?
o T(n) = ©(n®) — grows asymptotically as fast as n

00

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 37 /51

Complexity of Algorithms
00000000000

Tractable vs Intractable Problems

@ Some problems cannot be solved

e US Change Problem (subset sum problem (SSP)) can only be
solved in exponential time (intractable)

M. Zecchini S AR S BT Lecue2 38 /51

Recursive Algorithms
[leJele]

Tower of Hanoi problem

AN INTRODUCTION TO
BIOINFORMATICS ALGORITHMS

NEIL C. JONES AND PAVEL A. PEVZNER

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.5, the Tower of Hanoi problem.

M. Zecchini S AR S BT Lecue2 39/ 51

Recursion in Pythons

Tower of Hanoi problem

https://www.youtube.com/watch?v=rf6uf3jNjbo

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 40 / 51

https://www.youtube.com/watch?v=rf6uf3jNjbo

Recursive Algorithms
[e]e] o]

Tower of Hanoi Solution

HANOITOWERS(n, fromPeg,toPeg)

1 ifn=1

2 output “Move disk from peg fromPeg to peg toPeg”
3 return

4 wunusedPeg — 6 — fromPeg — toPeg

5 HANOITOWERS(n — 1, fromPeg, unusedPeg)

6 output “Move disk from peg fromPeg to peg toPeg”

7 HANOITOWERS(n — 1, unusedPeg, toPeg)

8 return

M. Zecchini e e BT

Recursion in Pythons

Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a
recursive function.

Termination condition:
@ A recursive function has to terminate to be used in a program.
@ A recursive function terminates, if with every recursive call the
solution of the problem is downsized and moves towards a
base case.
@ A base case is a case, where the problem can be solved
without further recursion.

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 42 /51

Recursive Algorithms
©00¢

Factorial Computation

Factorial Computation: Using Iteration

def iterative_factorial(n):
result = 1
for i in range(2,n+1):
result *= i
return result

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 43 /51

Recursive Algorithms

Factorial Computation

Factorial Computation: Using Recursion

def factorial(m):
if n == 1:
return 1
else:
return n * factorial(n-1)

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 44 /51

Factorial Computation

Factorial Computation

def factorial(m):
print ("factorial has been called with n = " + str(

res = n * factorial(mn-1)

print ("intermediate result for ", n, " x*
factorial (" ,n-1, "): ",res)

return res

print (factorial (5))

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 45 /51

Recursive Algorithms
[lelele]ele)

Fibonacci Numbers

Fn: n—1+Fn—2

The Fibonacci numbers are defined by:
where Fp =0and F, =1 J

e 0,1,1,2,35,8,13,21,34,55,89, ...

M. Zecchini e e BT

Algorithms

00@0000

Fibonacci Numbers

Factorial Computation: Using Recursion

def fib(n):
if n == 0:
return O
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2)

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics

Lecture 2

47 / 51

Recursive Algorithms

[e]e] le]ele]

Fibonacci Numbers

Factorial Computation: Using Iteration

def fibi(n):
a, b =0, 1
for i in range(mn):
a, b =b, a + b
return a

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 48 / 51

Algorithms

0000e00

Fibonacci Numbers

Measure Performance

import time

for i in range(1,41):

tl = time.perf_counter ()

s = fib (i)

t2 = time.perf_counter() - ti1
t3 = time.perf_counter ()

s = fibi (4i)
t4 = time.perf_counter() - t3

print (£"n={i}, fib: {t2:.2f}, fibi: {t4:.2f},
percent: {t2/t4:.2f}")

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 49 /51

Fibonacci Numbers

Lecture 2 50 / 51

orithms Recursive Algorithms

DO00000e

Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

memo = {0:0, 1:1}
def fibm(n):
if not n in memo:
memo [n] = fibm(n-1) + fibm(n-2)
return memo [n]

M. Zecchini Principles of Computer Science II: Algorithms for Biolnformatics Lecture 2 51 /51

	Algorithms for BioInformatics
	What is an algorithm?
	Approach

	Complexity of Algorithms
	Evaluating the performance of algorithms
	Complexity Classes

	Recursive Algorithms
	Recursion in Pythons
	Factorial Computation
	Fibonacci Numbers

