
Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Principles of Computer Science II
Algorithms for BioInformatics

Marco Zecchini

Sapienza University of Rome

Lecture 2

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 1 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Pebble Game

Game played in turns by 2 players.
Two piles of equal number of pebbles.
Each turn a player may either

take 1 pebble from a single pile, or
take 1 pebble from both piles.

The player that takes the last pebble wins.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 2 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Best Strategy for Winning the Pebble Game

Does the first player always have an advantage?
Let’s consider the most simplified version.

Pebbles = 2 – we call this the 2× 2 game.
Is there a winning strategy?
What is the winning strategy?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 3 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Generaled Strategy for Winning the Pebble Game

Can we generalize the strategy of the 2× 2 game?
What about the 3× 3 game?

Consider different game sequences.

Consider the n × n game.
Is there only one winning strategy?
How easy it is to describe our strategy?
Quality of solution.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 4 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

We build a matrix for all game combinations keeping track of the
winning moves:

1 ↑ take one pebble from pile A.
2 ← take one pebble from pile B.
3 ↖ take one pebble from each pile.
4 * ignore move.

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 5 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

The first player always loses the 2× 2.
Clearly also for 0× 2, 0× 4, . . .
Can we generalize for all games where each pile has an even
number of pebbles?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * *
3
4 *
5
6 *
7
8 *
9
10 *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 6 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

The first player always loses the 2× 2.
Clearly also for 0× 2, 0× 4, . . .
Can we generalize for all games where each pile has an even
number of pebbles?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * * * * * *
3
4 * * * * * *
5
6 * * * * * *
7
8 * * * * * *
9
10 * * * * * *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 6 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .

Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?
What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * * * * * *
3
4 * * * * * *
5
6 * * * * * *
7
8 * * * * * *
9
10 * * * * * *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 7 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .

Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?
What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * ← * ← * ← * ← * ← *
1 ↑
2 * * * * * *
3 ↑
4 * * * * * *
5 ↑
6 * * * * * *
7 ↑
8 * * * * * *
9 ↑
10 * * * * * *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 7 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .
Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * ← * ← * ← * ← * ← *
1 ↑ ↑ ↑ ↑ ↑ ↑
2 * ← * ← * ← * ← * ← *
3 ↑ ↑ ↑ ↑ ↑ ↑
4 * ← * ← * ← * ← * ← *
5 ↑ ↑ ↑ ↑ ↑ ↑
6 * ← * ← * ← * ← * ← *
7 ↑ ↑ ↑ ↑ ↑ ↑
8 * ← * ← * ← * ← * ← *
9 ↑ ↑ ↑ ↑ ↑ ↑
10 * ← * ← * ← * ← * ← *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 7 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .
Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?
What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * ← * ← * ← * ← * ← *
1 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
2 * ← * ← * ← * ← * ← *
3 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
4 * ← * ← * ← * ← * ← *
5 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
6 * ← * ← * ← * ← * ← *
7 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
8 * ← * ← * ← * ← * ← *
9 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
10 * ← * ← * ← * ← * ← *

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 7 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

An algorithmic approach for winning the Pebble Game

How can we build the matrix for any game size, e.g., 20× 20
What is the algorithm for winning the game?

Why in the world do I care about a game with two nerdy
people and a bunch of rocks? I’m interested in biology, and
this game has nothing to do with me
It is the sequence alignment problem.
The computational idea used to solve both problems is the
same.
We need to understand how algorithms work.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 8 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

An algorithmic approach for winning the Pebble Game

How can we build the matrix for any game size, e.g., 20× 20
What is the algorithm for winning the game?
Why in the world do I care about a game with two nerdy
people and a bunch of rocks? I’m interested in biology, and
this game has nothing to do with me

It is the sequence alignment problem.
The computational idea used to solve both problems is the
same.
We need to understand how algorithms work.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 8 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

An algorithmic approach for winning the Pebble Game

How can we build the matrix for any game size, e.g., 20× 20
What is the algorithm for winning the game?
Why in the world do I care about a game with two nerdy
people and a bunch of rocks? I’m interested in biology, and
this game has nothing to do with me
It is the sequence alignment problem.
The computational idea used to solve both problems is the
same.

We need to understand how algorithms work.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 8 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

What is an algorithm?

An algorithmic approach for winning the Pebble Game

How can we build the matrix for any game size, e.g., 20× 20
What is the algorithm for winning the game?
Why in the world do I care about a game with two nerdy
people and a bunch of rocks? I’m interested in biology, and
this game has nothing to do with me
It is the sequence alignment problem.
The computational idea used to solve both problems is the
same.
We need to understand how algorithms work.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 8 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Methodology of solving a computational problem

What is the problem at hand ?
Identify & Understand assumptions.
What is our goal ?
Identify similar problems/solutions in the bibliography
What are the theoretical foundation ?
Can we formulate the problem in a unambiguous and precise
way ?

What is the Input that we have ?
Do we have enough data or should we try to collect?
Open data sets ?
Can we synthesize input data ?

What is the expected Output ?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 9 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Solution Sketch

Do we have a rough idea of a solution ?
Do we have identified an approach to solving the problem ?

think again !
go through the definition – maybe we overlooked something ?

Write down a solution sketch
check if it adheres to the initial assumptions
can you try it out with a small input ?

Is the solution correct ? can we provide some arguments ?
What is the performance of the solution ?
Can we think of a more efficient solution ?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 10 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Implement the first version

Pick your programming language of choice.
Implement your solution

No need to try to make it elegant / fast.

Get some input data
Open datasets
Small size

Limited Evaluation
does it work ?
do you need to make any modifications ?
are there special cases that you missed ?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 11 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Iterative approach

Step-by-step development
Continuous development.
Agile methodology.

Identify issues in previous version
Code beautification.
Bug fixes.
Performance improvements.
Additional functionalities.

Implement improvements
Make sure code is always clean + easy to maintain.
Keep detailed records of changes.
Always keep history of source code evolution.

Performance Evaluation
bigger input.
scalability ?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 12 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Theoretical – Practical Approach Cycle

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 13 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 14 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

A well-formulated problem is unambiguous and precise, leaving no
room for misinterpretation.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 14 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

What is an algorithm?

Algorithm

An algorithm is a sequence of instructions that one must perform
in order to solve a well-formulated problem. We will specify the
problems in terms of their inputs and outputs.

A well-formulated problem is unambiguous and precise, leaving no
room for misinterpretation.
An algorithm is the method to translate the inputs into the
outputs.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 14 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

What is pseudocode? (and why we use it)

Goal: Describe an algorithm precisely without committing to
a programming language.

Key primitives:
Assignment: a← b
Arithmetic: +, −, ·, /,
Conditionals: if A is true B else C

Loops: for i ← a to b B / while A is true B

Arrays: a = (a 1,...,a n), access a i

Subroutines: named blocks with arguments and return

How to read it: treat each line as an atomic step;
indentation = block structure.

How to use it: first verify correctness by reasoning on
inputs/outputs

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 15 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Examples in pseudocode

MAX(a, b): returns the
larger number

if a < b

return b

else

return a

Example:
MAX(7, 3) → returns 7
MAX(-1, 4) → returns 4

ADDUNTIL(b): smallest i s.t.
1 + 2 + · · ·+ i > b

i <- 1

total <- i

while total <= b

i <- i + 1

total <- total + i

return i

Example: ADDUNTIL(25) → returns
7 (since 1+2+3+4+5+6 = 21 ≤
25, 1+...+7 = 28 > 25)

Observation: Pseudocode describes the algorithm’s logic independently of

any programming language — indentation shows structure and flow.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 16 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Is this algorithm good?

We have identified a problem...

... we came out with an algorithm that solve the problem (our
course)...

... but does the algorithm solve the problem? and at
which cost? Are there better solutions? (again, our
course)

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 17 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the algorithm solve the problem?

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.3 - 2.4, the US changing problem.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 18 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the algorithm solve the problem?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 19 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the algorithm solve the problem?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 20 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the algorithm solve the problem?

If M = 40 and c = (25, 10, 5, 1),
BetterChange returns (1, 1, 1, 0) while
(2, 0, 0, 0) would be the right solution.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 21 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the Algorithm solve the problem?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 22 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the Algorithm solve the problem?

Yes

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 22 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Approach

Does the Algorithm solve the problem?

Yes but at which cost?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 22 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Evaluating the performance of algorithms

Measuring Performance

Performance of an algorithm?
Speed/Computational Time
Memory/Space
Robustness/Failures
Network/Communication
Consumption/Energy
. . .

How can we measure the speed/memory/robustness/. . . of an
algorithm?
How much performance degrades when the amount of input
data increases?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 23 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Evaluating the performance of algorithms

Is not CPU enough?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 24 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Evaluating the performance of algorithms

Is not CPU enough?

No! We want to be independent

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 24 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Evaluating the performance of algorithms

Computational Time Complexity

Computational Complexity

Describes the change in the runtime of an algorithm, depending on
the change in the input data’s size.

Measures the speed of an algorithm.
How much additional time it requires when the amount of
input data increases.
Examples:

How much longer does it take to find an element within an
unsorted array when the size of the array doubles?
How much longer does it take to find an element within a
sorted array when the size of the array doubles?

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 25 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Evaluating the performance of algorithms

Space Complexity

Computational Complexity

Describes the requirements in terms of memory of an algorithm,
depending on the size of the input data.

Measures the memory requirements of an algorithm.
Without considering the size of the input data.
Additional memory is used by:

Helper variables within loops.
Temporary data structures.
Call stack.
. . .

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 26 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Complexity Classes – Big O Notation

We organize algorithms into Complexity Classes
A complexity class is noted using the Bachmann-Landau
symbol O (“big O”)
Let f the function to be estimated
Let g the comparison function
We write f (x) = O (g(x)) as x →∞
f is bounded above by g (up to constant factor)
asymptotically.
We do not measure the exact running time rather we classify
the behaviour when n is sufficiently large.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 27 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Complexity Classes – Asymptotic behaviour

An algorithm may contain sub-components of different
complexity.
For large inputs, the behaviour will be dominated by the part
of the complexity that grows fastest.

Complexity function g(n) = 100× n2 + 10000× n + 840
grows like O(n2)
Complexity function g(n) = 0.33× n3 grows like O(n3)

If f (x) is a sum of several terms: we keep the one with the
largest growth rate.
If f (x) is a product of several factors, any constants can be
omitted.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 28 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Constant Time – O(1)

Pronounced: “Order 1”, “O of 1”, “big O of 1”
The runtime is constant.
Independent of the number of input elements n.
Examples

Accessing a specific element of an array of size n.
Inserting an element at the beginning of a list.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 29 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Linear Time – O(n)

Pronounced: “Order n”, “O of n”, “big O of n”
Runtime grows linearly with the number of input elements n.
If n doubles, then the runtime approximately doubles, too.
Examples

Finding a specific element in an array of size n.
Summing up all elements of an array.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 30 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Quadratic Time – O(n2)

Pronounced: “Order n squared”, “O of n squared”, “big O of
n squared”
Runtime grows linearly to the square of the number of input
elements n.
If n doubles, then the runtime approximately quadruples.
Examples

Simple sorting algorithms (e.g., Insertion Sort).

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 31 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Logarithmic Time – O(log n)

Pronounced: “Order log n”, “O of log n”, “big O of log n”
Runtime increases by a constant amount when the number of
input elements n doubles.
Examples

Binary search.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 32 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Big O Notation Order

O(1) – constant time
O(log n) – logarithmic time
O(n) – linear time
O(n log n) – quasilinear time
O(n2) – quadratic time

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 33 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Other Complexity Classes

O(nm) – polynomial time
O(2n) – exponential time
O(n!) – factorial time
. . .

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 34 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Example: SUMINTEGERS(n) — code & complexity
side-by-side

Pseudocode

SUMINTEGERS(n)

sum <- 0

for i <- 1 to n

sum <- sum + i

return sum

Task: Compute 1 + 2 + · · ·+ n
using a loop.

Complexity analysis

The loop runs exactly n
times.

Each iteration performs:

one addition,
one assignment.

Total number of basic
operations: proportional to
n.

Time:
T (n) = c · n + k = O(n)

Space: S(n) = O(1) (only
two variables).

Example: For n = 5, operations =
5 iterations → linear growth.

Observation: runtime increases proportionally with input size; doubling n

doubles time.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 35 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Example: ADDUNTIL(b) — code & complexity side-by-side

Pseudocode

ADDUNTIL(b)

i <- 1

total <- i

while total <= b

i <- i + 1

total <- total + i

return i

Task: return the smallest i such
that 1 + 2 + · · ·+ i > b.

Complexity analysis

After k iterations:

1+2+ · · ·+ k =
k(k + 1)

2
.

Loop stops at the smallest

k with
k(k + 1)

2
> b.

Solve the inequality:
k2 + k − 2b > 0⇒ k ≈√
8b + 1− 1

2
.

Therefore, the number of
iterations is O(

√
b) and

each iteration is O(1).

Time: T (b) = O(
√
b)

Space: S(b) = O(1).

Teaching tip: Ask students to
hand-trace ADDUNTIL(25); they’ll
see it returns 7.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 36 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Little-oh and Big-Theta notations

We write f (x) = o (g(x)) – read “f (x) is little-oh of g(x)”
g(x) grows much faster than f (x)
f is dominated by g asymptotically.
O has to be true for at least one constant M, little-o holds for
every postivie constant ϵ, however small.

We write f (x) = Θ (g(x)) – read “f (x) is big-theta of g(x)”
f is bounded both above and below by g asymptotically.

Consider T (n) = 73n3 + 22n2 + 58, all the following are
generally acceptable:

T (n) = O(n100) – grows asymptotically no faster than n100

T (n) = O(n3) – grows asymptotically no faster than n3

T (n) = Θ(n3) – grows asymptotically as fast as n3

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 37 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Complexity Classes

Tractable vs Intractable Problems

Some problems cannot be solved

US Change Problem (subset sum problem (SSP)) can only be
solved in exponential time (intractable)

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 38 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Recursion in Pythons

Tower of Hanoi problem

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

Section 2.5, the Tower of Hanoi problem.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 39 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Recursion in Pythons

Tower of Hanoi problem

https://www.youtube.com/watch?v=rf6uf3jNjbo

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 40 / 51

https://www.youtube.com/watch?v=rf6uf3jNjbo


Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Recursion in Pythons

Tower of Hanoi Solution

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 41 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Recursion in Pythons

Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a
recursive function.

Termination condition:

A recursive function has to terminate to be used in a program.
A recursive function terminates, if with every recursive call the
solution of the problem is downsized and moves towards a
base case.
A base case is a case, where the problem can be solved
without further recursion.

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 42 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Factorial Computation

Factorial Computation: Using Iteration

def iterative_factorial(n):

result = 1

for i in range(2,n+1):

result *= i

return result

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 43 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Factorial Computation

Factorial Computation: Using Recursion

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 44 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Factorial Computation

Factorial Computation

def factorial(n):

print("factorial has been called with n = " + str(

n))

if n == 1:

return 1

else:

res = n * factorial(n-1)

print("intermediate result for ", n, " *

factorial(" ,n-1, "): ",res)

return res

print(factorial (5))

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 45 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Fibonacci Numbers

The Fibonacci numbers are defined by:
Fn = Fn−1 + Fn−2

where F0 = 0 and F1 = 1

0,1,1,2,3,5,8,13,21,34,55,89, . . .

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 46 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Factorial Computation: Using Recursion

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 47 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Factorial Computation: Using Iteration

def fibi(n):

a, b = 0, 1

for i in range(n):

a, b = b, a + b

return a

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 48 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Measure Performance

import time

for i in range (1,41):

t1 = time.perf_counter ()

s = fib(i)

t2 = time.perf_counter () - t1

t3 = time.perf_counter ()

s = fibi(i)

t4 = time.perf_counter () - t3

print(f"n={i}, fib: {t2:.2f}, fibi: {t4:.2f},

percent: {t2/t4:.2f}")

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 49 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Fibonacci Numbers

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 50 / 51



Algorithms for BioInformatics Complexity of Algorithms Recursive Algorithms

Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

memo = {0:0, 1:1}

def fibm(n):

if not n in memo:

memo[n] = fibm(n-1) + fibm(n-2)

return memo[n]

M. Zecchini Principles of Computer Science II: Algorithms for BioInformatics Lecture 2 51 / 51


	Algorithms for BioInformatics
	What is an algorithm?
	Approach

	Complexity of Algorithms
	Evaluating the performance of algorithms
	Complexity Classes

	Recursive Algorithms
	Recursion in Pythons
	Factorial Computation
	Fibonacci Numbers


