

Principles of Computer Science II

Working with Data Sets

Marco Zecchini

Sapienza University of Rome

Lecture 8

Analysis of Data

- Viewing and analyzing vast amounts of biological data in its unstructured entirety can be perplexing.

Example #1

Analyzing data obtained from DNA microarray experiments (expression analysis – i.e., determining which genes are switched “on” or “off” under certain conditions of interest).

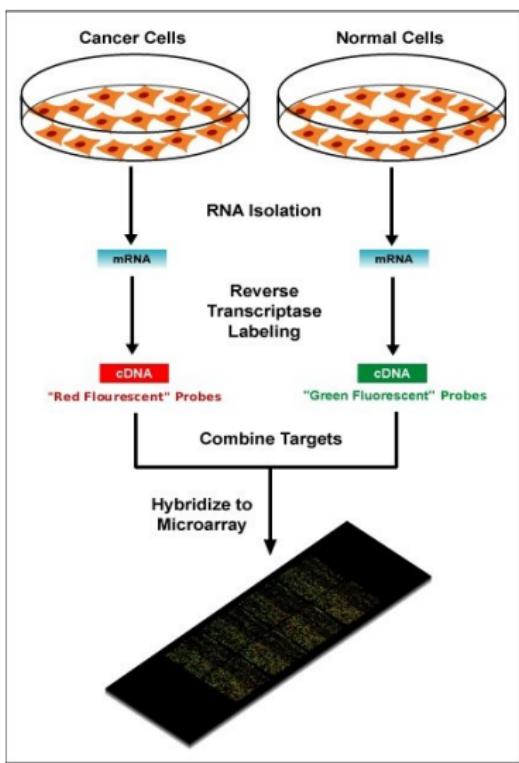
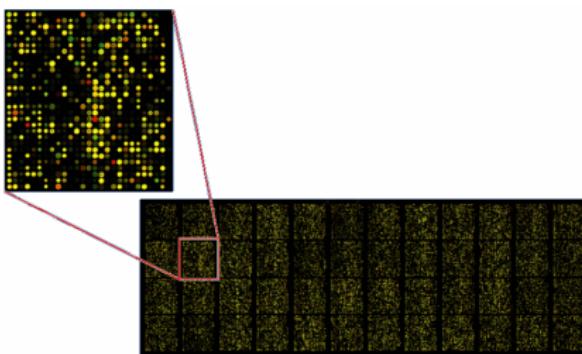
Example #2

Building and understanding evolutionary trees based on genomic or other data.

Microarrays and expression analysis

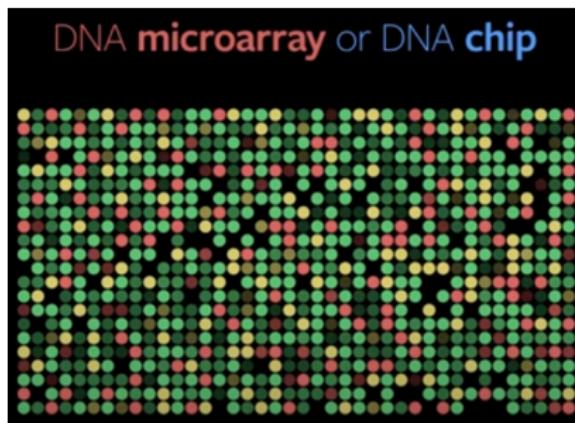
- Microarrays measure activity (expression level) of genes under varying conditions and/or points in time.
- Expression level is estimated by measuring amount of mRNA for that particular gene:
 - A gene is active if it is being transcribed.
 - More mRNA usually indicates more gene activity.

A Microarray Experiment



- Input: Biological samples (RNA) turned into fluorescent markers (cDNA), experimental conditions.
- Output: Numerical data on gene expression (matrix)

MicroArray Experiment



<https://www.youtube.com/watch?v=0ATUjAxNf6U>

Microarray Data Transformation

- Microarray data are usually transformed into a (relative, normalized) intensity matrix
- Can also be represented as a bit matrix (\log_2 of relative intensity)
- The intensity matrix allows biologists to infer correlations between different genes (even if they are dissimilar) and to understand how genes functions might be related

Microarray Data Intensity Matrix

- The intensity Matrix is composed by n rows one per each analyzed gene and m columns, one per each condition/time instant

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

(a) Intensity matrix, \mathbf{I}

Microarray Data Intensity Matrix

- The intensity Matrix is composed by n rows one per each analyzed gene and m columns, one per each condition/time instant
- Which genes are similar?

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

(a) Intensity matrix, \mathbf{I}

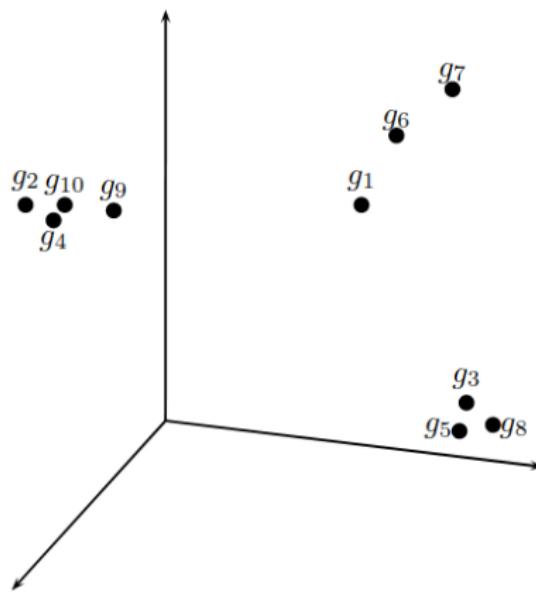
Microarray Data Intensity Matrix

- The intensity Matrix is composed by n rows one per each analyzed gene and m columns, one per each condition/time instant
- Which genes are similar?
- How to measure the distance/similarity?

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

(a) Intensity matrix, \mathbf{I}

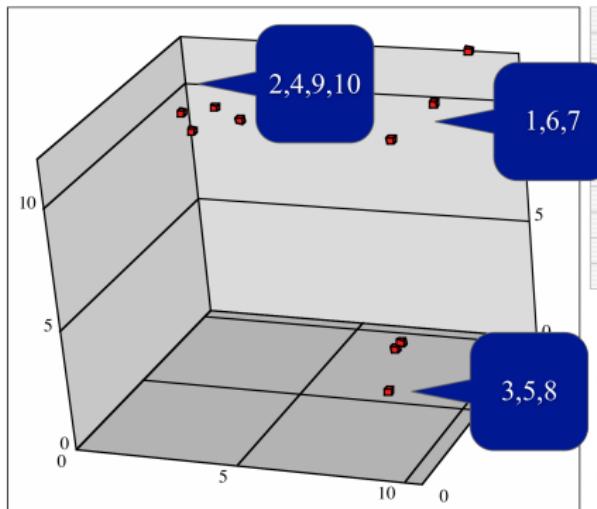
Points in a three-dimensional space



Euclidean Distance in D-dimensions

$$D(x, y) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

Finding Similar Genes



	1	2	3	4	5	6	7	8	9	10
1		8.1	9.2	7.7	8.9	2.3	5.1	10.9	6.1	7.0
2	8.1		12.0	0.9	11.8	9.5	10.1	13.3	2.0	1.0
3	9.2	12.0		11.2	0.5	11.1	8.1	1.7	10.5	11.5
4	7.7	0.9	11.2		10.9	9.2	9.5	12.5	1.6	1.1
5	8.9	11.8	0.5	10.9		10.8	8.0	2.1	10.3	11.3
6	2.3	9.5	11.1	9.2	10.8		5.6	12.7	7.7	8.5
7	5.1	10.1	8.1	9.5	8.0	5.6		9.3	8.3	9.9
8	10.9	13.3	1.7	12.5	2.1	12.7	9.3		12.0	12.9
9	6.1	2.0	10.5	1.6	10.3	7.7	8.3	12.0		1.1
10	7.0	1.0	11.5	1.1	11.3	8.5	9.3	12.9	1.1	

PAIRWISE DISTANCES

	1	6	7	2	4	9	10	3	5	8
1	0.0	2.3	5.1	8.1	7.7	6.1	7.0	9.2	8.9	10.9
6	2.3	0.0	5.6	9.5	9.2	7.7	8.5	11.1	10.8	12.7
7	5.1	5.6	0.0	10.1	9.5	8.3	9.3	8.1	8.0	9.3
2	8.1	9.5	10.1	0.0	0.9	2.0	1.0	12.0	11.8	13.3
4	7.7	9.2	9.5	0.9	0.0	1.6	1.1	11.2	10.9	12.5
9	6.1	7.7	8.3	2.0	1.6	0.0	1.1	10.5	10.3	12.0
10	7.0	8.5	9.3	1.0	1.1	1.1	0.0	11.5	11.3	12.9
3	9.2	11.1	8.1	12.0	11.2	10.5	11.5	0.0	0.5	1.7
6	8.9	10.8	8.0	11.8	10.9	10.3	11.3	0.5	0.0	2.1
8	10.9	12.7	9.3	13.3	12.5	12.0	12.9	1.7	2.1	0.0

REARRANGED DISTANCES

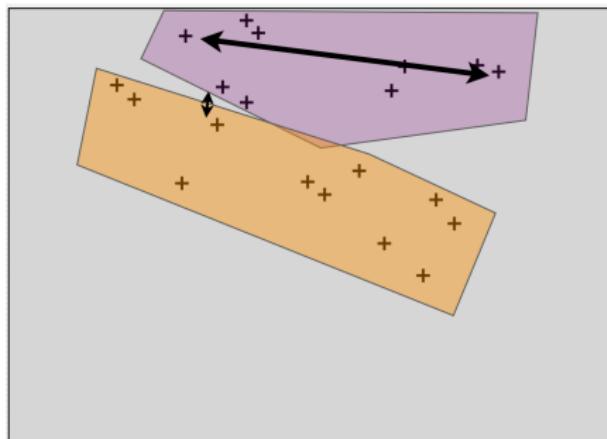
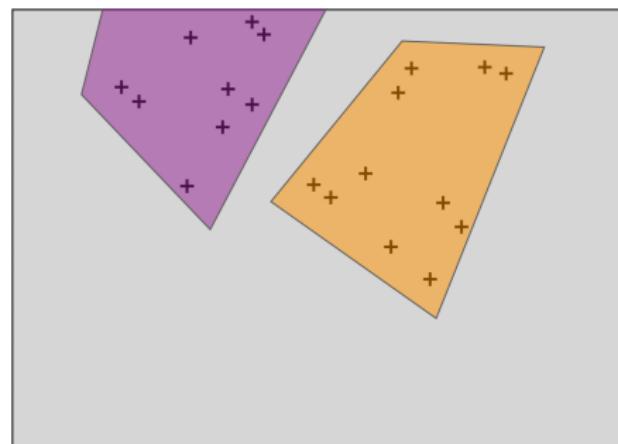
The Clustering Problem

- **Motivation:** Find patterns in a sea of data
- **Input**
 - A (large) number of datapoints: N
 - A measure of distance between any two data points d_{ij}
- **Output**
 - Groupings (**clustering**) of the elements into K (the number can be user-specified or automatically determined) 'similarity' classes
 - Sometimes there is also an objective measure that the obtained clustering seeks to minimize.

Clustering Principles

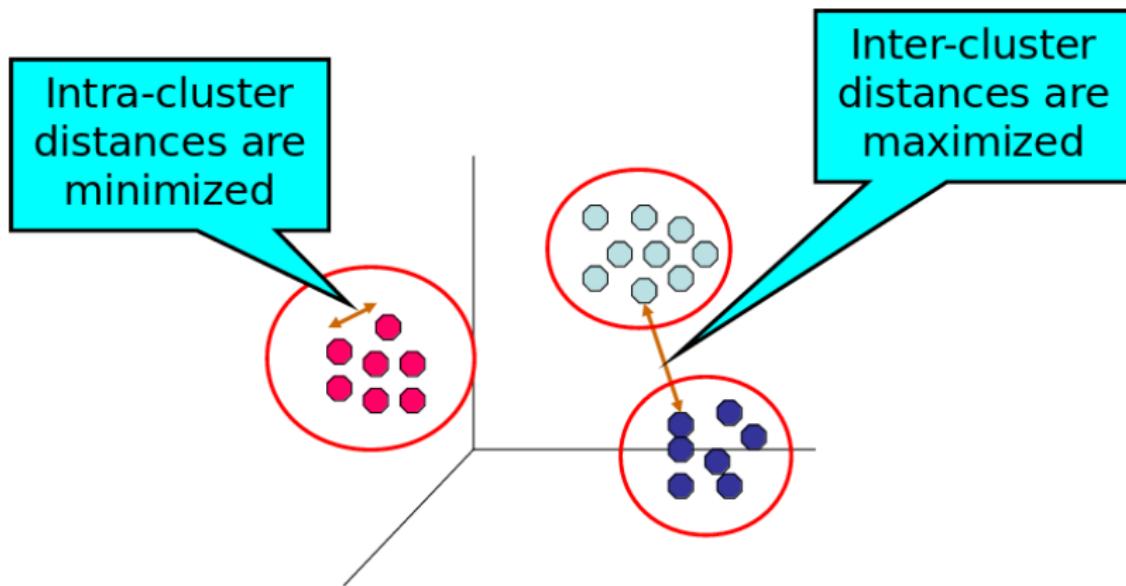
- **Homogeneity** – elements of the same cluster are maximally close to each other.
- **Separation** – elements in separate clusters are maximally far apart from each other.
- One is actually implied by the other (in many cases).
- Generally it is a hard problem.
 - Clustering in 2 dimensions looks easy
 - Clustering small amounts of data looks easy
 - High-dimensional spaces look different – Almost all pairs of points are at about the same distance

Some Examples



- Both principles (homogeneity and separation) are violated
- Points in the same cluster are far apart
- Points in different cluster
- More reasonable assignment.
- We need to use an objective function to optimize cluster assignment.

Intra/Inter Cluster Distances



- Suitably select distance metric.
- **Maximize** Inter-cluster distances.
- **Minimize** Intra-cluster distances.

Distance Measures

- Each clustering problem is based on some kind of “**distance**” between points.
- Two major classes of distance measure:
 - 1 Euclidean
 - 2 Non-Euclidean
- A **Euclidean** space has some number of real-valued dimensions.
 - There is a notion of “average” of two points.
 - A **Euclidean distance** is based on the locations of points in such a space.
- A **Non-Euclidean distance** is based on properties of points, but not their “location” in a space.

Axioms of a Distance Measure

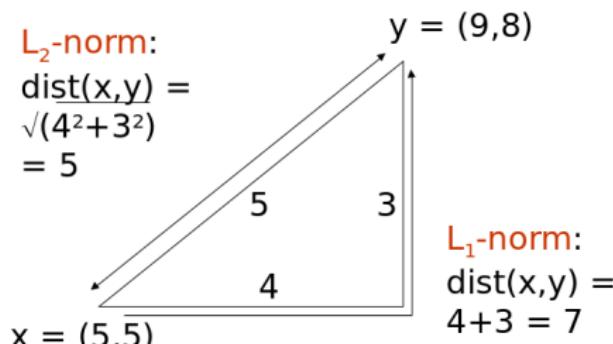
d is a distance measure if it is a function from pairs of points to real numbers such that:

- ① $d(x, y) > 0$
- ② $d(x, y) = 0$ iff $x = y$
- ③ $d(x, y) = d(y, x)$
- ④ $d(x, y) < d(x, z) + d(z, y)$ (triangle inequality)

Some Euclidean Distances

L_2 -norm: $d(x, y) = \text{square root of the sum of the squares of the differences between } x \text{ and } y \text{ in each dimension.}$
The most common notion of “distance”.

L_1 -norm: sum of the differences in each dimension.
Manhattan distance = distance if you had to travel along coordinates only.



Some Non-Euclidean Distances

Jaccard distance for sets = 1 minus ratio of sizes of intersection and union.

Edit distance = number of inserts and deletes to change one string into another.

Jaccard Distance for Sets

Example: two strings of bits $p_1 = 10111$; $p_2 = 10011$.

Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = $\frac{3}{4}$.

$$d(x, y) = 1 - (\text{Jaccard similarity}) = \frac{1}{4}.$$

Why JD is a distance measure?

- ① $d(x, x) = 0$ because $x \cap x = x \cup x$
- ② $d(x, y) = d(y, x)$ because union and intersection are symmetric
- ③ $d(x, y) \geq 0$ because $|x \cap y| \leq |x \cup y|$
- ④ $d(x, y) < d(x, z) + d(z, y)$ is a bit more difficult... you have to solve the following equation
$$\left(1 - \frac{|x \cap z|}{|x \cup z|}\right) + \left(1 - \frac{|y \cap z|}{|y \cup z|}\right) \geq 1 - \frac{|x \cap y|}{|x \cup y|}$$

Edit Distance

The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:

$$d(x, y) = |x| + |y| - 2|LCS(x, y)|$$

LCS = **longest common subsequence** = any longest string obtained both by deleting from x and deleting from y .

Example

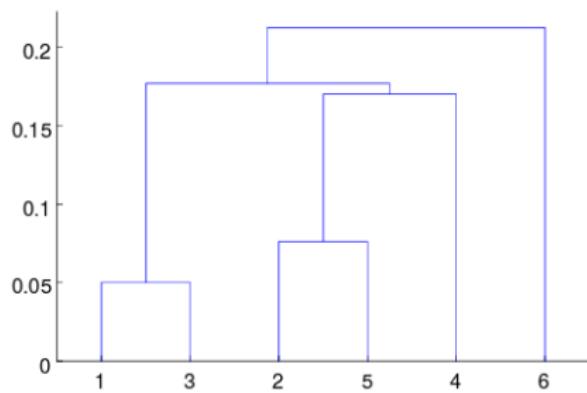
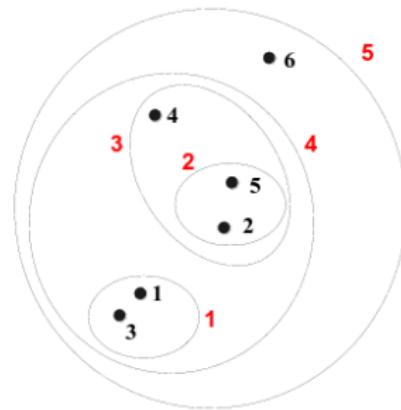
- $x = abcde$; $y = bcduve$.
- Turn x into y by deleting a , then inserting u and v after d .
Edit distance = 3.
- Or, $LCS(x, y) = bcde$.
- Note: $|x| + |y| - 2|LCS(x, y)| = 5 + 6 - 2 \times 4 = 3 = \text{edit dist}$

Why Edit Distance is a Distance Measure?

- 1 $d(x, x) = 0$ because 0 edits suffice.
- 2 $d(x, y) = d(y, x)$ because insert/delete are inverses of each other
- 3 $d(x, y) \geq 0$ no notion of negative edits
- 4 $d(x, y) < d(x, z) + d(z, y)$ **Triangle inequality**:
changing x to z and then to y is one way to change x to y .

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a *dendrogram* – A tree-like diagram that records the sequences of merges or splits



Agglomerative Hierarchical Clustering

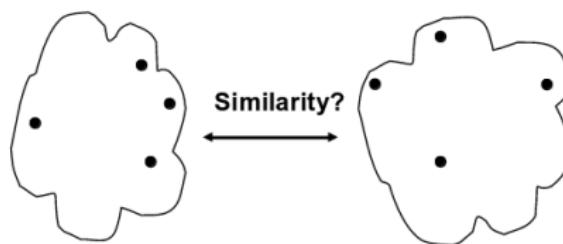
- Initially, each point is a cluster
- Key operation: computation of the proximity of two clusters
- Different approaches to defining the distance between clusters distinguish the different algorithms

HIERARCHICALCLUSTERING(d, n)

d = distance matrix

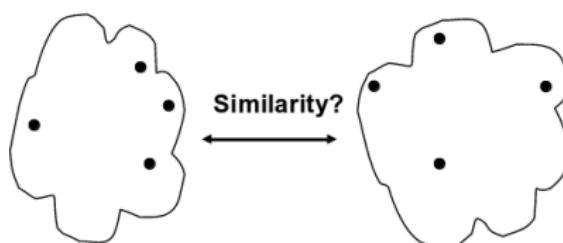
- 1 Form n clusters, each with 1 element
- 2 Construct a graph T by assigning an isolated vertex to each cluster
- 3 **while** there is more than 1 cluster
- 4 Find the two closest clusters C_1 and C_2
- 5 Merge C_1 and C_2 into new cluster C with $|C_1| + |C_2|$ elements
- 6 Compute distance from C to all other clusters
- 7 Add a new vertex C to T and connect to vertices C_1 and C_2
- 8 Remove rows and columns of d corresponding to C_1 and C_2
- 9 Add a row and column to d for the new cluster C
- 10 **return** T

How to define Inter-cluster similarity?



How do we compute the distance between two clusters C^*, C ? We need to turn a *set of points* into a single *value*

How to define Inter-cluster similarity?

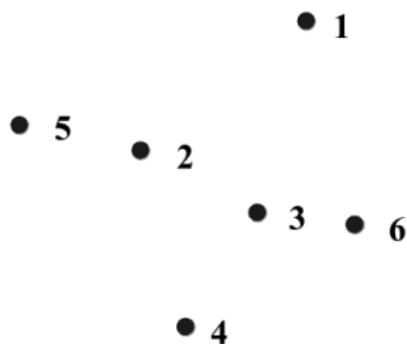
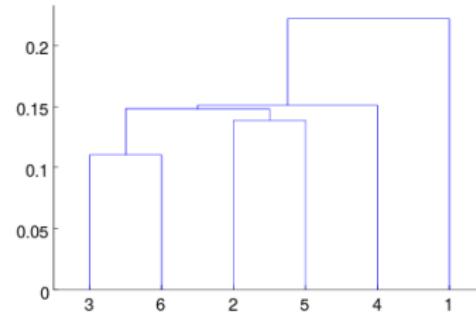


How do we compute the distance between two clusters C^* , C ? We need to turn a *set of points* into a single *value*

- **Minimum**, based on the two most similar (closest) points in different clusters: $d_{\min(C^*, C)} = \min_{x \in C^*, y \in C} d(x, y)$
- **Maximum**, based on the two least similar (most distant) points in different clusters: $d_{\max(C^*, C)} = \max_{x \in C^*, y \in C} d(x, y)$
- **Group Average**: $d_{\text{avg}(C^*, C)} = \frac{1}{|C^*||C|} \sum_{x \in C^*, y \in C} d(x, y)$

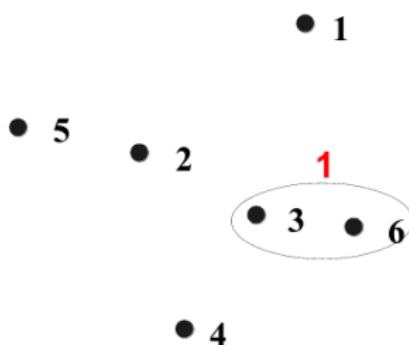
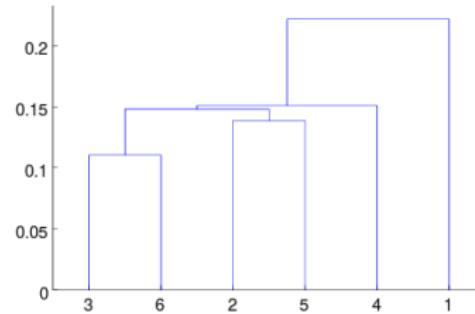
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



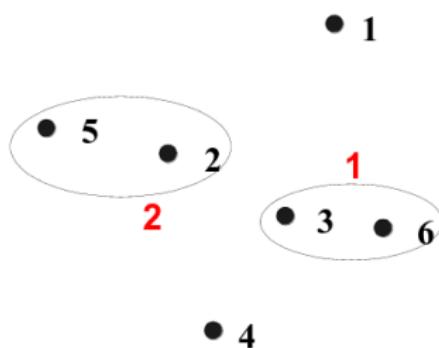
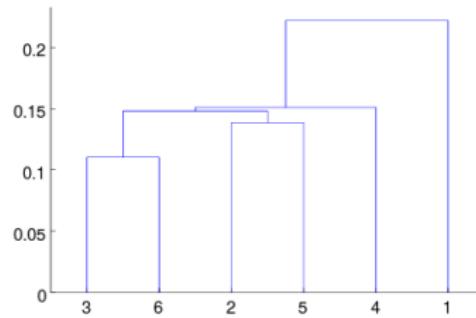
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



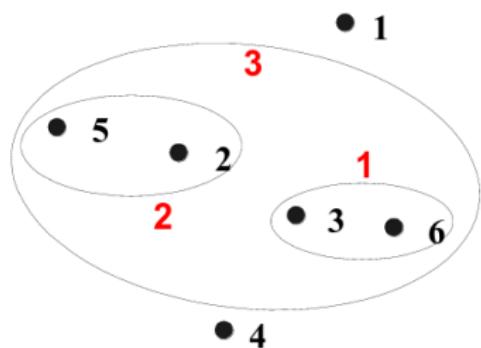
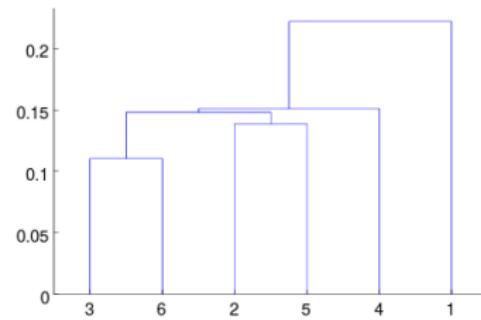
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



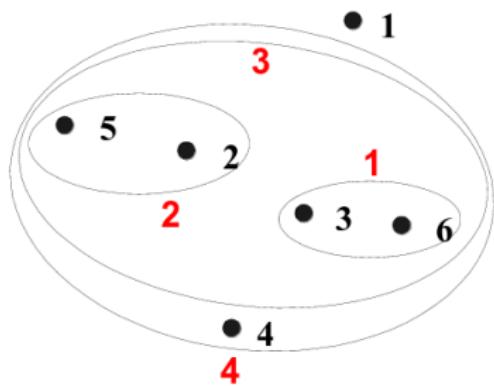
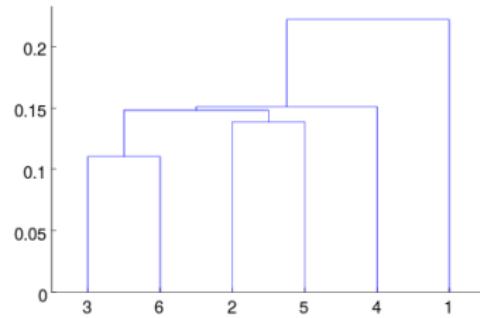
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



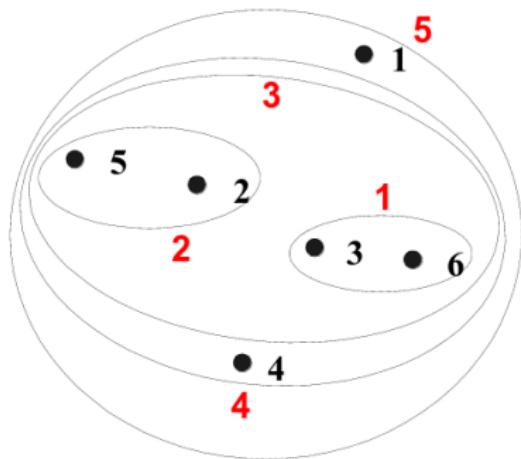
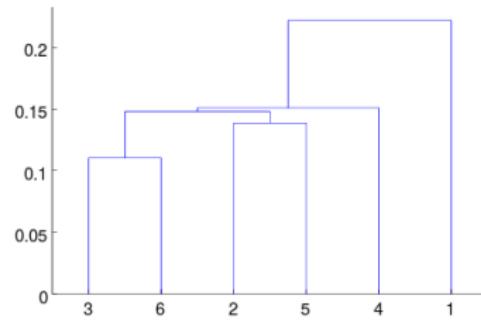
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters

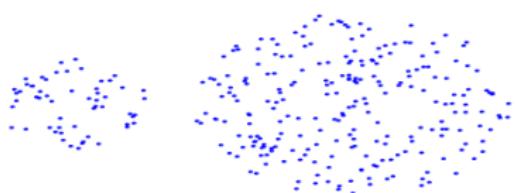


Minimum – Example

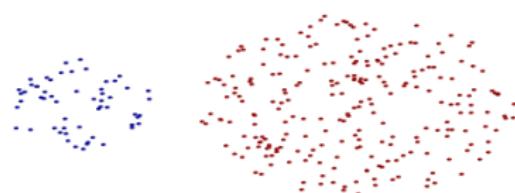
Minimum – based on the two most similar (closest) points in the different clusters



Minimum – Strength

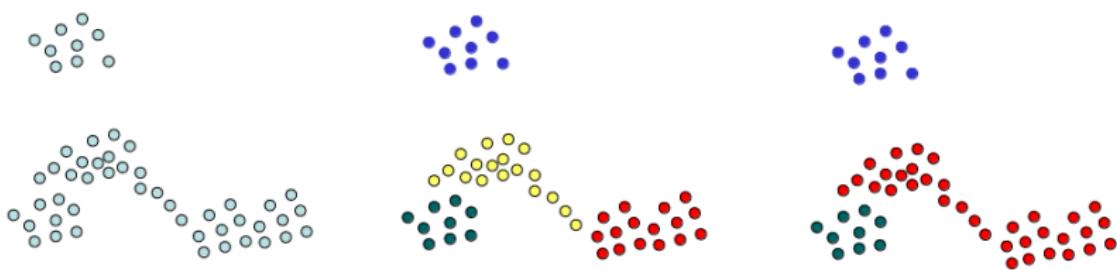


Original Points



Two Clusters

Minimum – Limitations



Original Points

Four clusters

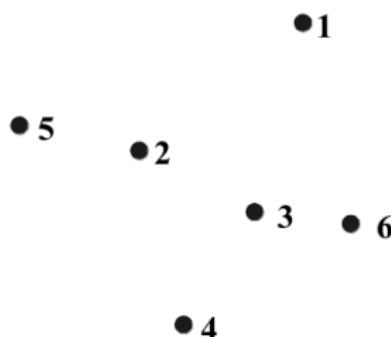
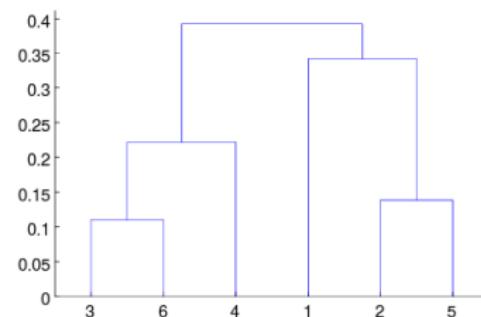
Three clusters:

The yellow points got wrongly merged with the red ones, as opposed to the green one.

Sensitive to noise and outliers

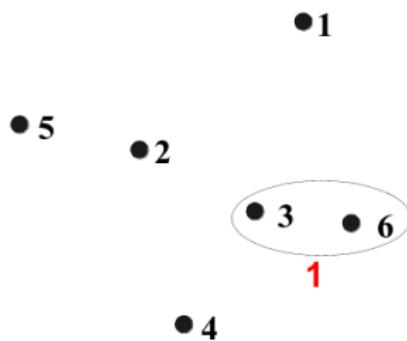
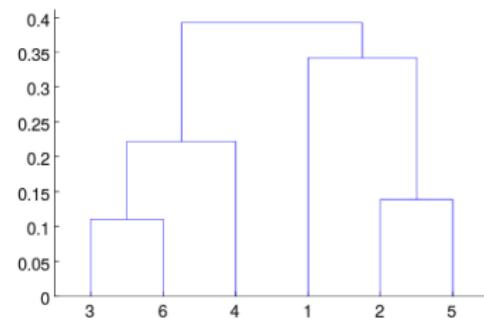
Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



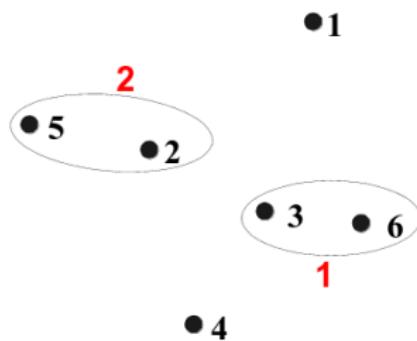
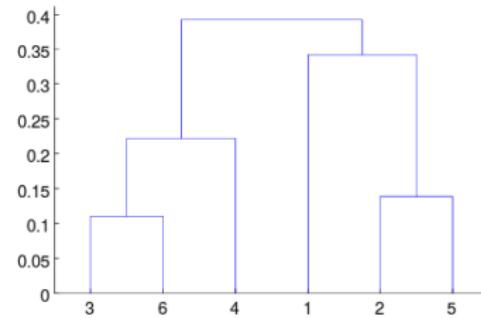
Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



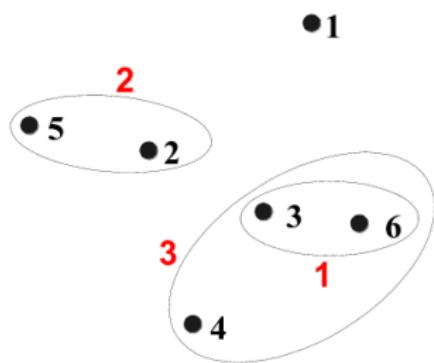
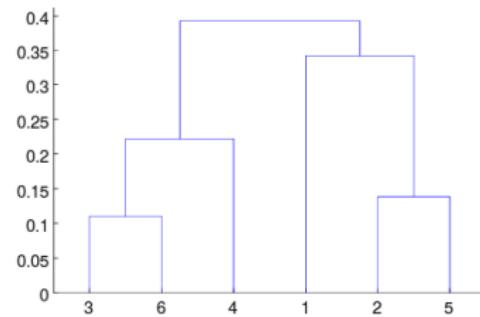
Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



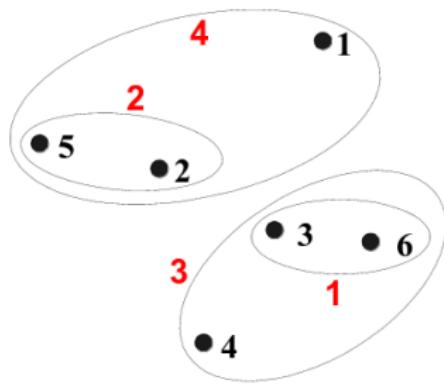
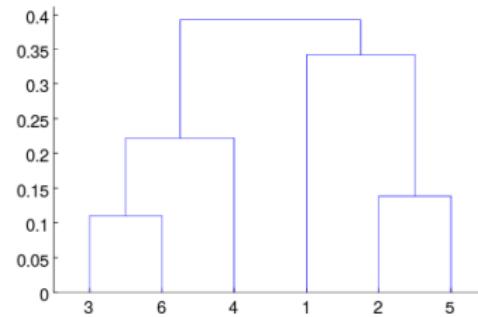
Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



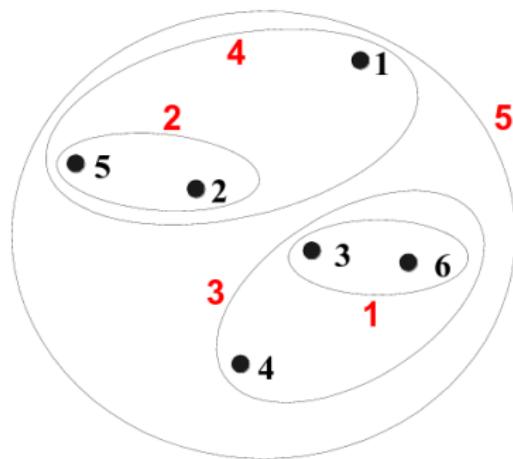
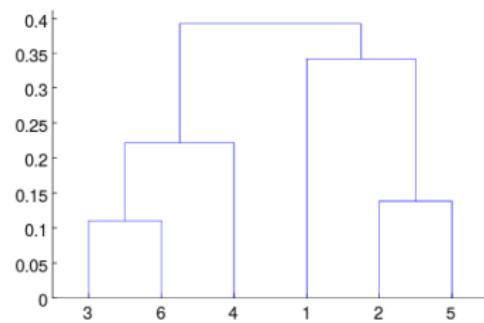
Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters

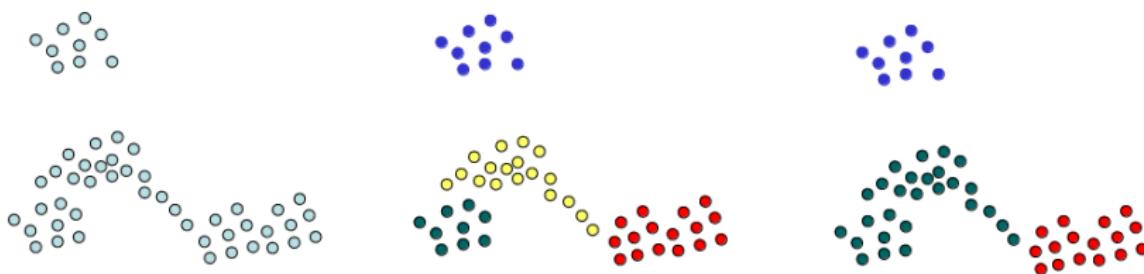


Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



Maximum – Strength



Original Points

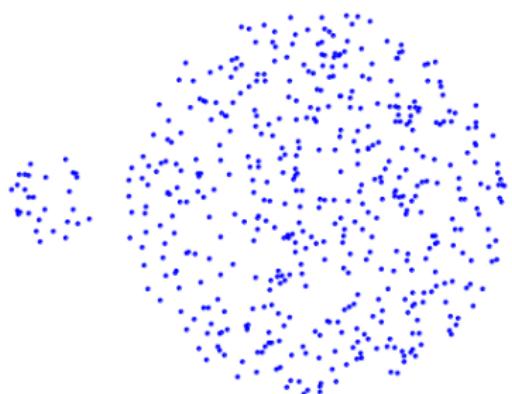
Four clusters

Three clusters:

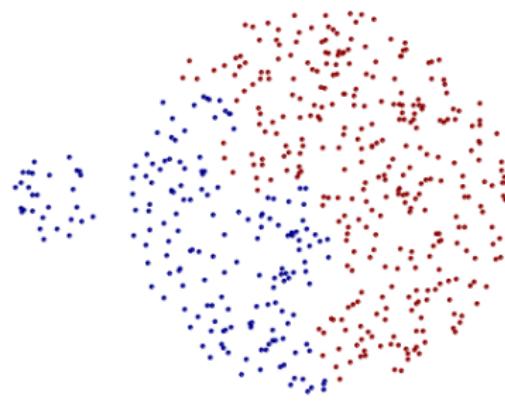
The yellow points
get now merged with
the green one.

Less susceptible respect to noise and outliers

Maximum – Limitations



Original Points



Two Clusters

K-means Algorithm

- Developed and published in Applied Statistics by Hartigan and Wong, 1979.
- Many variations have been proposed since then.
- Standard/core function of R, Python, Matlab, ...
- Assumes Euclidean space/distance

Given a set of n points in m dimensions $\mathcal{V} = \{x_1, \dots, x_n\}$ and a set of k centers of $\mathcal{X} = \{x_1, \dots, x_k\}$, the aim of the K-means algorithm is to divide n points into k clusters so that the following within-cluster sum of squares is **minimized**:

$$d(\mathcal{V}, \mathcal{X}) = \frac{\sum_{i \in C_k, i' \in \mathcal{X}} \sum_{j=1}^m (x_{ij} - x_{i'j})^2}{n}$$

where C_k is the set of points in the k -th cluster

Cluster Initialization

- Start by picking k , the number of clusters
- Initialize clusters by picking one point per cluster

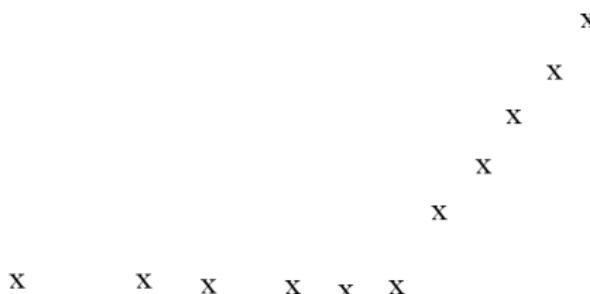
Example: Pick one point at random, then $k - 1$ other points, each as far away as possible from the previous points

Populating Clusters

- 1 For each point, place it in the cluster whose current centroid it is nearest
- 2 After all points are assigned, update the locations of centroids of the k clusters
- 3 Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- 4 Repeat 2 and 3 until convergence

Convergence: Points do not move between clusters and centroids stabilize

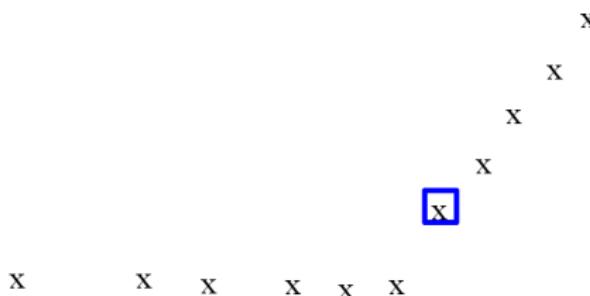
A Simple Example



X ... data point
□ ... centroid

Clusters after round 1

A Simple Example



X ... data point
█ ... centroid

Clusters after round 1

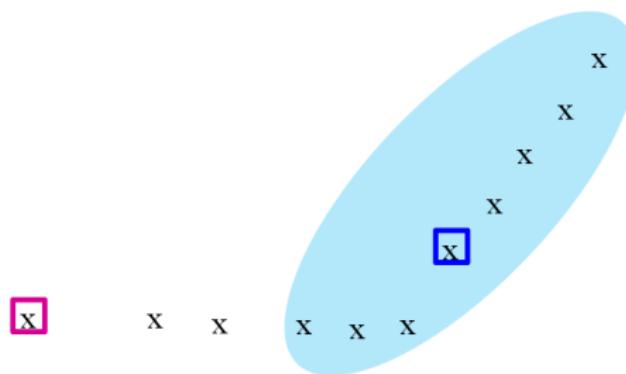
A Simple Example

x ... data point

... centroid

Clusters after round 1

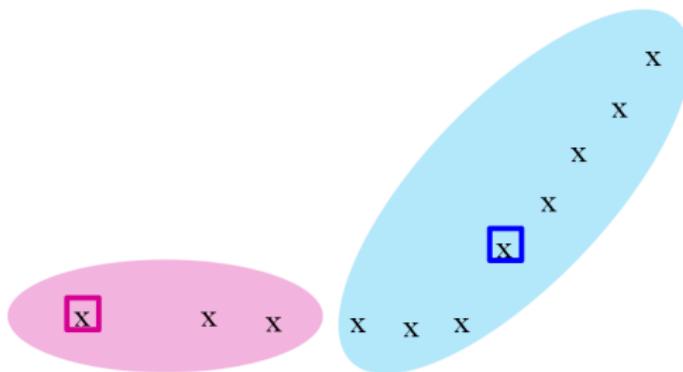
A Simple Example



X ... data point
 \square ... centroid

Clusters after round 1

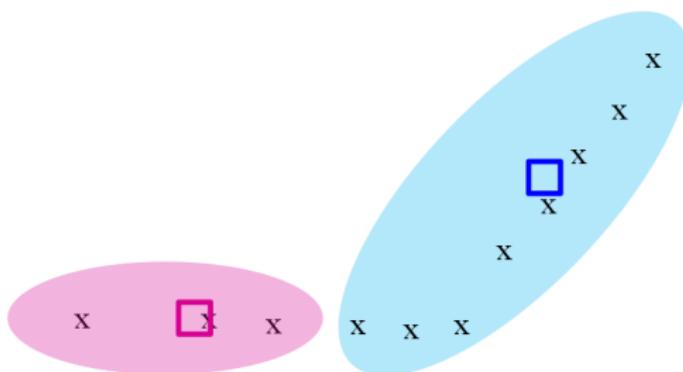
A Simple Example



X ... data point
█ ... centroid

Clusters after round 1

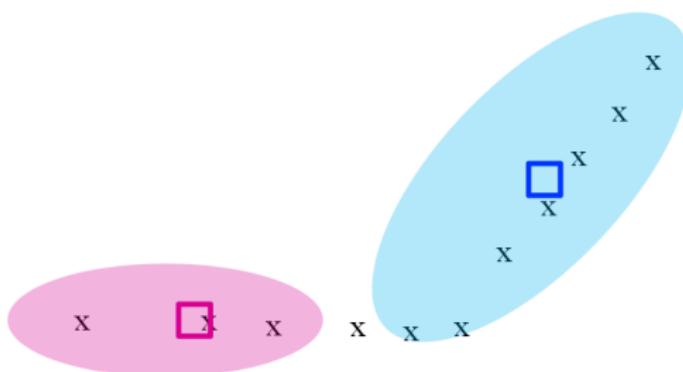
A Simple Example



X ... data point
□ ... centroid

Clusters after round 2

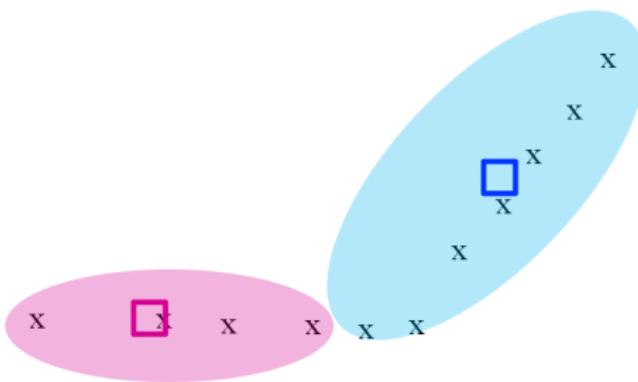
A Simple Example



X ... data point
□ ... centroid

Clusters after round 2

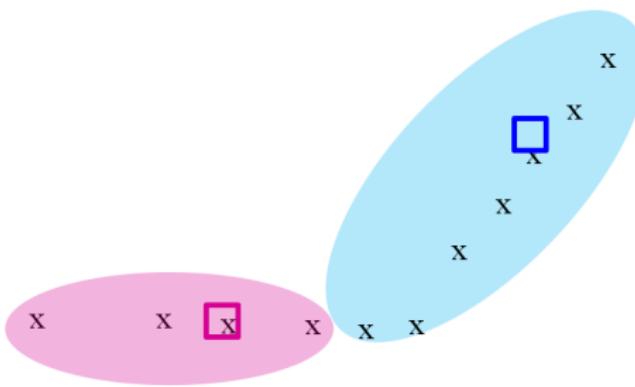
A Simple Example



X ... data point
□ ... centroid

Clusters after round 2

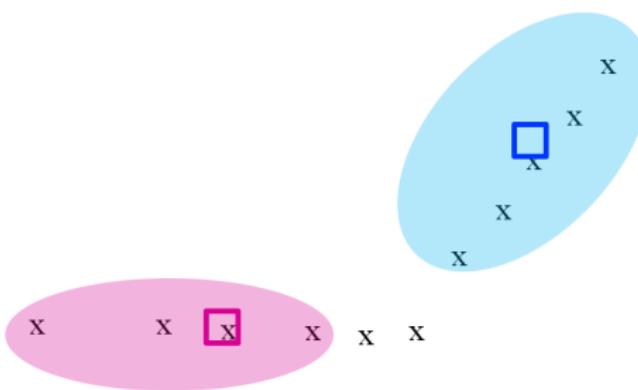
A Simple Example



X ... data point
█ ... centroid

Clusters at the end

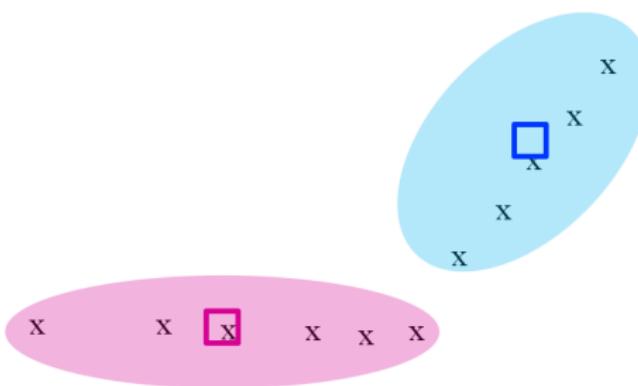
A Simple Example



X ... data point
□ ... centroid

Clusters at the end

A Simple Example

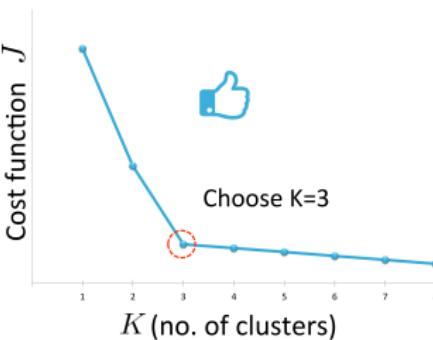


X ... data point
 \square ... centroid

Clusters at the end

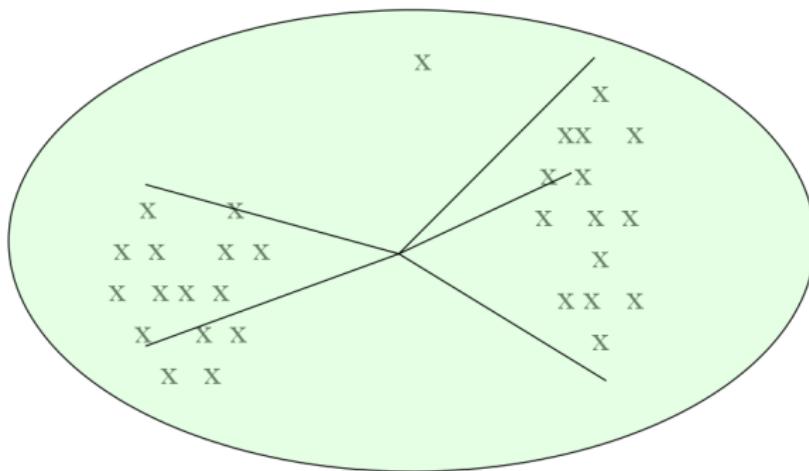
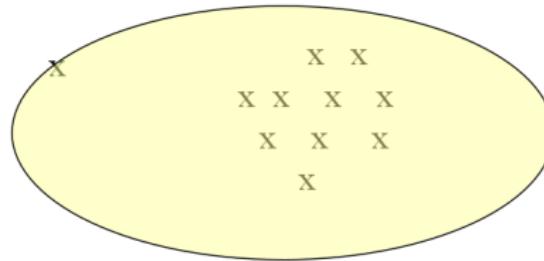
How to select k ?

- We use the elbow method to determine the optimum number of clusters.
- Try different k , looking at the change in the average distance to centroid as k increases.
- Average falls rapidly until right k , then changes little.



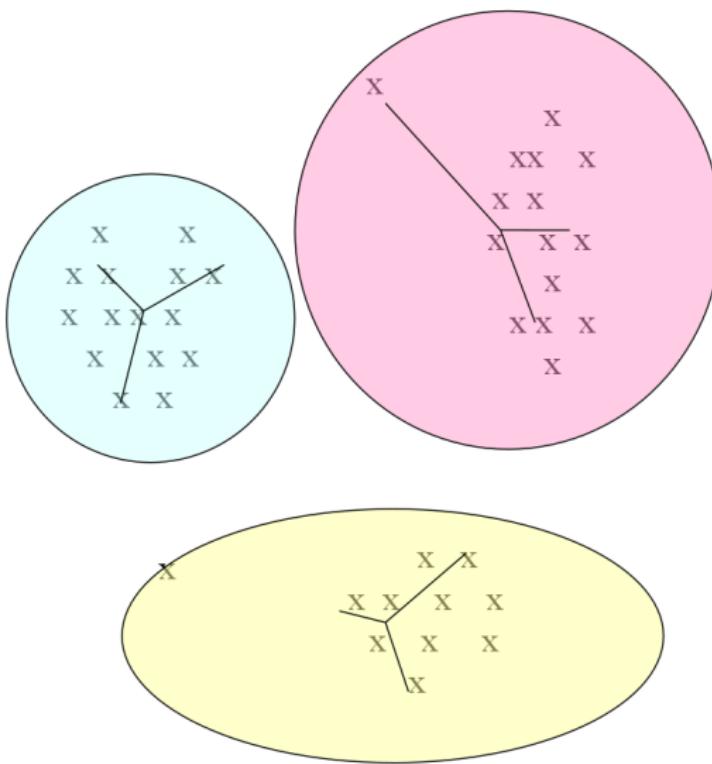
Selection of k – an example

**Too few;
many long
distances
to centroid.**



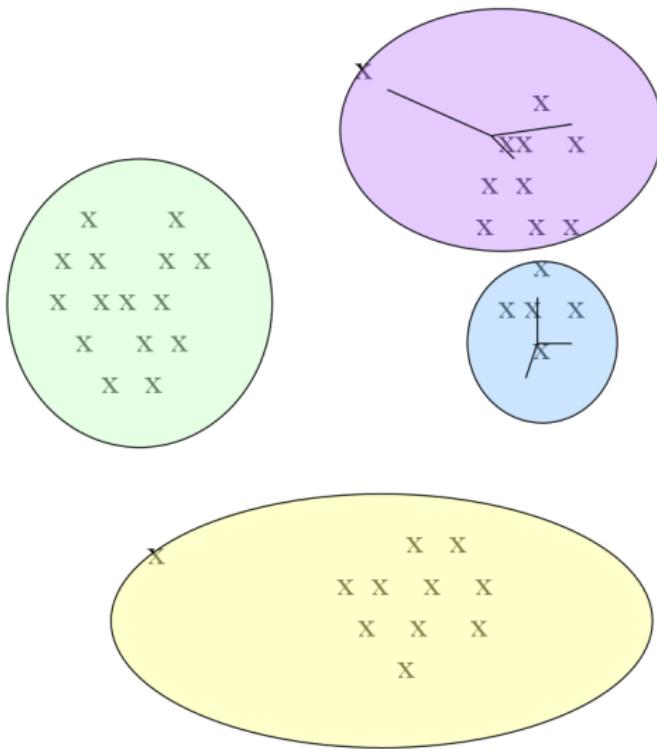
Selection of k – an example

**Just right;
distances
rather short.**



Selection of k – an example

**Too many;
little improvement
in average
distance.**



K-means in Python

Open this GDrive folder and let us see how to use K-means:

https://drive.google.com/drive/folders/1kZDtH_7eo0K3ERXFerUt9J1fYZXf00kM?usp=sharing

