
Greedy Algorithms  



US Change Problem 

It is a greedy algorithm:

At every step of iteration, a greedy algorithm tries to find the 
best optimal solution (e.g., used the most the coin with the biggest 
value)



US Change Problem 

Why greedy?

"greedy" means having excessive desire for something without considering 
the effect or damage done.



US Change Problem 

Does it always find a correct solution?

When c_1 = 25, c_2 = 20, c_3 = 10, c_4 = 5, c_5 = 1,

if M = 40, BetterChange returns i_1 = 1, i_3 = 1, i_4 = 1

We would solve the problem with i_2 = 2…



US Change Problem 

We can ask ourselves: how close are we from the optimal solution? 

Maybe this algorithm works almost always correctly



Outline of the lecture 

We are going to see a bioinformatic problem 
that we try to solve with different greedy 
algorithms and we are going to evaluate their 
goodness in finding the best solution



https://www.youtube.com/watch?v=lCoUp2Bq8OA&list=PLQ-85lQlPqFOcGz6A3g
2ZArRL09Ffpp_N (until 8:52)

Let us see a problem in Biology 

https://www.youtube.com/watch?v=lCoUp2Bq8OA&list=PLQ-85lQlPqFOcGz6A3g2ZArRL09Ffpp_N
https://www.youtube.com/watch?v=lCoUp2Bq8OA&list=PLQ-85lQlPqFOcGz6A3g2ZArRL09Ffpp_N


Reversal Distance Problem 
• Goal: Given two permutations, find the shortest 

series of reversals that transforms one into another

• Input: Permutations π and σ

• Output: A series of reversals ρ1,…ρt transforming π 
into σ, such that t is minimum

• t - reversal distance between π and σ
• d(π, σ) - smallest possible value of t, given π and σ



Sorting By Reversals Problem 

• Goal: Given a permutation (i.e., a vector in a 
random order), find a shortest series of 
reversals that transforms it into the identity 
permutation (1 2 … n ) 

• Input: Permutation π

• Output: A series of reversals ρ1, … ρt transforming π into the identity permutation 
such that t is minimum

                    



Reversals 
• Reversal ρ ( i, j ) reverses (flips) the 

elements from i to j in π  
π   = π 1 ------ π i-1 π i π i+1 ------  π j-1 π j π j+1 ----- π n

                               
        π 1 ------ π i-1 π j π j-1 ------ π i+1 π i π j+1 ----- πn

ρ(i,j)



Reversals: Example 

          π = 1 2 3 4 5 6 7 8                 
                                                                             
          ρ(2,4)

                  1 2 5 4 3 6 7 8

         
                  

index of the 
array



Reversals: Example 

          π = 1 2 3 4 5 6 7 8                 
                                                                

             
          ρ(2,4)

                  1 2 5 4 3 6 7 8

         ρ(4,5)

                  1 2 5 4 6 3 7 8

index of the 
array



Sorting By Reversals: Example 

• t = d(π ) - reversal distance of π
• Example :
                     π    =  3  4  2  1  5  6  7  10  9  8
                               4  3  2  1 5   6  7  10  9  8
                               4  3  2  1  5  6  7    8  9 10
                               1  2  3  4  5  6  7    8  9 10
        So d(π ) = 3



Sorting by reversals: 5 steps 



Sorting by reversals: 4 steps  



Sorting by reversals: 4 steps  

What is the reversal distance for this 
permutation? Can it be sorted in 3 steps? 



Sorting By Reversals: A Greedy Algorithm  

• If sorting permutation π = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them. 

• The length of the already sorted prefix of π is 
denoted prefix(π)
•  prefix(π) = 3

• This results in an idea for a greedy algorithm: 
increase prefix(π) at every step



• Doing so, π  can be sorted
    

1 2 3 6 4 5 

                       1 2 3 4 6 5
                       
                       1 2 3 4 5 6

• Number of steps to sort permutation of 
length n is at most (n – 1)

Greedy Algorithm: An Example



Greedy Algorithm: Pseudocode 
SimpleReversalSort(π)
1 for  i 🡨 1 to n - 1 # assuming that elements are from 1 to n

2    j 🡨 position of element i in π (i.e., πj = i)
3    if  j ≠i
4       π 🡨 we apply ρ(i, j) on π
5    if π is the identity permutation 
6      return π



Analyzing SimpleReversalSort  
• SimpleReversalSort does not guarantee the 

smallest number of reversals and takes five 
steps on  π = 6 1 2 3 4 5 :

        Step 0: 6 1 2 3 4 5
• Step 1: 1 6 2 3 4 5
• Step 2: 1 2 6 3 4 5 
• Step 3: 1 2 3 6 4 5
• Step 4: 1 2 3 4 6 5



• But it can be sorted in two steps:
  π    =  6 1 2 3 4 5   

• Step 1:  5 4 3 2 1 6     
• Step 2:  1 2 3 4 5 6

• So, SimpleReversalSort(π) is not optimal
• But how good is it?

Analyzing SimpleReversalSort (cont’d)



• But it can be sorted in two steps:
  π    =  6 1 2 3 4 5   

• Step 1:  5 4 3 2 1 6     
• Step 2:  1 2 3 4 5 6

• So, SimpleReversalSort(π) is not optimal
• But how good is it?
• Optimal algorithms are unknown for many 

problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d)



Approximation Algorithms 

• These algorithms find approximate solutions 
rather than optimal solutions

• The approximation ratio of an algorithm A on 
the problem with input π is:
                    A(π) / OPT(π)
where 
        A(π) - solution produced by algorithm A                 

OPT(π) - optimal solution of the problem
+ (in our case, π is an instance of the reversal sorting 

problem)



Approximation Algorithms 

● If an algorithm has an approximation ratio = 
1.5, it means that the solution it finds is never 
more than 150% of the optimal one.
○ For example, if the minimum sorting requires 10 

reversals, the approx algorithm will use at most 
15.



Approximation Ratio  

• For algorithm A that minimizes objective 
function (minimization algorithm):
• max|π| = n A(π) / OPT(π)

• For maximization algorithm:
• min|π| = n A(π) / OPT(π)



Can we do better than 
SimpleReversalSort(π)? 

Yes

Sometimes we need to characterize 
better the problem to make more 
sophisticated techniques



DISCLAIMER: DON’T BE 
AFRAID 

You are requested to understand the 
general idea of greedy not how to 
elaborate this more sophisticated 
techniques (right now..)



         π = π1π2π3…πn-1πn
• A pair of elements π i and π i + 1 are adjacent if 
                          πi+1 = πi  + 1
• For example:
        π = 1  9  3  4  7  8  2  6  5
• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints 



There is a breakpoint between any adjacent 
element that are non-consecutive:

                π = 1  9  3  4  7  8  2  6  5

• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) form 
breakpoints of permutation π 

   

Breakpoints: An Example 



There is a breakpoint between any adjacent 
element that are non-consecutive:

                π = 1  9  3  4  7  8  2  6  5

• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) form 
breakpoints of permutation π 

• b(π) - # breakpoints in permutation π
   

Breakpoints: An Example 



• We want to ensure that also the first and the last 
element are in the right positions. To do that…

• We put two elements π 0 =0 and π n + 1=n+1 at 
the ends of π

Example: 

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations 

π = 0 1  9  3  4  7  8  2  6  5 10

π = 1  9  3  4  7  8  2  6  5



Sum up: Adjacency & 
Breakpoints 

•An adjacency - a pair of adjacent elements that are consecutive

• A breakpoint - a pair of adjacent elements that are not consecutive

π = 5  6  2  1  3  4

0  5  6  2  1  3  4  7
adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7



▪ Observation: each reversal eliminates at most 2 
breakpoints.

π  = 2  3  1  4  6  5
0  2  3  1  4  6  5  7       b(π) = 5
0  1  3  2  4  6  5  7            b(π) = 4
0  1  2  3  4  6  5  7     b(π) = 2
0  1  2  3  4  5  6  7                b(π) = 0

Reversal Distance and Breakpoints  



▪ Observation: each reversal eliminates at most 2 
breakpoints.

▪ This implies: 
      reversal distance  ≥  #breakpoints / 2
π  = 2  3  1  4  6  5

0  2  3  1  4  6  5  7       b(π) = 5
0  1  3  2  4  6  5  7            b(π) = 4
0  1  2  3  4  6  5  7     b(π) = 2
0  1  2  3  4  5  6  7                b(π) = 0

Reversal Distance and Breakpoints  



Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2  Among all possible reversals,   

choose reversal ρ minimizing b(π) after 
its application

3  π 🡨 apply ρ(i, j) on π
4 return π



Sorting By Reversals: A Better Greedy Algorithm  

BreakPointReversalSort(π)
1 while b(π) > 0
2  Among all possible reversals,   

choose reversal ρ minimizing b(π) after 
its application

3  π 🡨 apply ρ(i, j) on π
4 return π Problem: this algorithm may work 

forever (we cannot reduce the 
number of breakpoints anymore)



Can we do better than 
BreakPointReversalSort(π)? 

Yes

We need to characterize even better 
the problem to exploit further aspects



Strips 
• Strip: an interval between two consecutive 

breakpoints in a permutation 
• Decreasing strip: strip of elements in 

decreasing order (e.g. 6 5 and 3 2 ).
• Increasing strip: strip of elements in increasing 

order (e.g. 7 8)
               
                 0  1  9  4  3  7  8  2  5  6 10 

• A single-element strip can be declared either increasing or 
decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1



Reducing the Number of Breakpoints  

Observation 1:
   If permutation π contains at least one 

decreasing strip, then there exists a 
reversal ρ  which decreases the number of 
breakpoints (i.e. b(π) after ρ < b(π) )



Things To Consider 
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 



Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 



Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 

• Find k – 1 in the permutation



Things To Consider (cont’d)  
• For π  = 1 4 6 5 7 8 3 2  
             0  1  4  6  5  7  8  3  2  9      b(π) = 5

• Choose decreasing strip with the smallest 
element k in π ( k = 2 in this case) 

• Find k – 1 in the permutation
• Reverse the segment between k and k-1:
• 0  1  4  6  5  7  8  3  2  9 b(π) = 5

• 0  1  2  3  8  7  5  6  4  9 b(π) = 4



Reducing the Number of 
Breakpoints Again 
  • If there is no decreasing strip, there may be no 

reversal ρ  that reduces the number of 
breakpoints (i.e. b(π) after ρ  ≥ b(π) for any  
reversal ρ). 

• By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create a 
decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (observation 1).



Things To Consider (cont’d)  
• There are no decreasing strips in π, for:

            π  = 0  1  2  5  6  7  3  4  8    b(π) = 3
 ρ(6,7) on π = 0  1  2  5  6  7  4  3  8    b(π) = 3 

✔ ρ(6,7) does not change the # of breakpoints
✔ ρ(6,7) creates a decreasing strip thus 

guaranteeing that the next step will decrease 
the # of breakpoints by doing ρ(6,2).



ImprovedBreakpointReversalSort  
ImprovedBreakpointReversalSort(π)
1 while b(π) > 0
2     if π has a decreasing strip
3    Among all possible reversals, choose reversal ρ 
                              that minimizes b(π) after ρ
4     else
5        Choose a reversal ρ that flips an increasing strip in π
6                  π 🡨 apply ρ on π
7  return π



• ImprovedBreakPointReversalSort is the optimal 
solution?

ImprovedBreakpointReversalSort: 
performance?  



• ImprovedBreakPointReversalSort is the optimal 
solution? Unfortunately, no..

• ImprovedBreakPointReversalSort is an approximation 
algorithm
• Optimal algorithm eliminates at most 2 breakpoints 

in every step: d(π) ≥ b(π) / 2
• It eliminates at least one breakpoint in every two 

steps;  at most 2b(π) steps
• Approximation ratio: 2b(π)  / d(π)

ImprovedBreakpointReversalSort: 
performance?  



• ImprovedBreakPointReversalSort is the optimal 
solution? Unfortunately, no..

• ImprovedBreakPointReversalSort is an approximation 
algorithm
• Approximation ratio: 2b(π)  / d(π)

• NOTE: we can compute d(π) for a specific instance of 
π but not for all the instance of sorting by reversal problem, 
in this way we can compute the approximation ratio

ImprovedBreakpointReversalSort: 
performance?  



Take home messages 

When should we use Greedy 
Algorithms?



When should we use Greedy Algorithms? 

• Simple and easy to understand

we follow a simple idea: for every subproblem, a greedy 
algorithm tries to find the best optimal solution (e.g.,  in 
ImprovedBreakpointReversalSort, choose reversal ρ that 
minimizes b(π) after ρ)



When should we use Greedy Algorithms? 

• Simple and easy to understand

we follow a simple idea: for every subproblem, a greedy 
algorithm tries to find the best optimal solution (e.g.,  in 
ImprovedBreakpointReversalSort, choose reversal ρ that 
minimizes b(π) after ρ)

This is also the limit: following a simple rule (or rules) for 
all the subproblems might lead to naive solutions (i.e., 
solutions that consider the characteristics of every 
subproblem missing details)



When should we use Greedy Algorithms? 

• Can be used as a building block for other algorithms: it 
can be used as a starting point for developing more complex 
algorithms.

We started with SimpleReversalSort
We improve it with BreakPointReversalSort
We improve it with ImprovedBreakpointReversalSort



When should we use Greedy Algorithms? 

• Fast and efficient (compared to other techniques)

example: SimpleReversalSort runs in O(n) (n size of 
the vector π)



When should we use Greedy Algorithms? 

• Provides a good enough solution (we have seen how 
good today for one problem)

ImprovedBreakPointReversalSort still finding acceptable 
approximate solutions (not the best ones)

We still don’t know an efficient algorithm computing the 
optimal solution for sorting by reversal


