Greedy Algorithms




US Change Problem

.

United States Change Problem:

, , BETTERCHANGE(M, ¢, d)
Convert some amount of money into the fewest number of coins.

1 r— M
Input: An amount of money, M, in cents. § for l‘ = t/o d
g <« T/C}
Output: The smallest number of quarters ¢, dimes d, nickels 4 b
n, and pennies p whose values add to M (i.e., 25g + 10d + 5. et {is & i)

Sn+p= M and q + d + n + pis as small as possible).

It is a greedy algorithm:

At every step of iteration, a greedy algorithm tries to find the
best optimal solution (e.q., used the most the coin with the biggest
value)




US Change Problem
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United States Change Problem:

, , BETTERCHANGE(M, ¢, d)
Convert some amount of money into the fewest number of coins. '

1 r— M
Input: An amount of money, M, in cents. § for ]‘ 1 t/o d
U < T/Cp
Output: The smallest number of quarters ¢, dimes d, nickels 4 I
n, and pennies p whose values add to M (i.e., 25g + 10d + 5 return (i1, i i)

Sn+p= M and q + d + n + pis as small as possible).

Why greedy?

"greedy"” means having excessive desire for something without considering
the effect or damage done.




US Change Problem

BETTERCHANGE(M, c,d)
1 r— M

2 for k—1tod

3 ik — r/ck

4 P — T —Ck - ig
5 retum(-il.'ig.....i(g)

Does it always find a correct solution?
Whenc 1=25,¢c 2=20,c 3=10,c 4=5,c 5=1,
if M = 40, BetterChange returnsi 1=1,i 3=1,i 4=1

We would solve the problem withi 2= 2...



US Change Problem

. e I

BETTERCHANGE(M, ¢, d)
1 r— M

2 for k—1tod

3 1) +— 7‘/C;\.

4 r«—17r—Cp-ip
5 return ('il.ig,....'itl)

We can ask ourselves: how close are we from the optimal solution?

Maybe this algorithm works almost always correctly




Outline of the lecture

We are going to see a bioinformatic problem
that we try to solve with different greedy
algorithms and we are going to evaluate their
goodness in finding the best solution




Let us see a problem in Biology

Genome Rearrangements

’. b.‘ .f
E .
S Mouse (X chromosome)

- +——-—a— -  —e——
Unknown ancestor /

~ 75 million years ago \

- - > —— - —
Human (X chromosome)

* What are the similarity blocks and how to find them?

* What is the evolutionary scenario for transforming one
genome into the other?

https://www.youtube.com/watch?v=ICoUp2Bq80A&list=PLQ-85IQIPqFOcGz6A39g
2ZArRLO9Ffpp N (until 8:52)



https://www.youtube.com/watch?v=lCoUp2Bq8OA&list=PLQ-85lQlPqFOcGz6A3g2ZArRL09Ffpp_N
https://www.youtube.com/watch?v=lCoUp2Bq8OA&list=PLQ-85lQlPqFOcGz6A3g2ZArRL09Ffpp_N

Reversal Distance Problem

Goal: Given two permutations, find the shortest

series of reversals that transforms one into another
|Input: Permutations 7= and ¢

Qutput: A series of reversals p.,...p, transforming =
Into o, such that f is minimum

t - reversal distance between 7z and ¢
d(rz, o) - smallest possible value of t, given r and o



Sorting By Reversals Problem

Goal: Given a permutation (i.e., a vector in a
random order), find a shortest series of
reversals that transforms it into the identity
permutation (7 2... n)

Input: Permutation =

Qutput: A series of reversals p ,
transforming z into the identity permutatlon
such that f is minimum




Reversals

Reversal p (1, j ) reverses (flips) the
elements fromi/tojinz




'Reversals: Example

n=12345678 index of the

___________________________ array

12543678




'Reversals: Example

n=12345678 . index of the
________________________________ array
p(2‘,2_)— ————— l
12543678
p(4,5) l

12546378




Sorting By Reversals: Example

t = d(x ) - reversal distance of #

Example :
# =3421567 10 98
43215 67 109 8
4 3215067 8910
12345067 8910

So d(x) =3



\Sorting by reversals: 5 steps

Step0O:® 2 -4-3 5-8-7 -6
Step 1 2 3 4 5-8-7-6
Step 2 2 345 6 7 8 1
Step 3 2 3 4 5 6 7 8-
Step4: -8 -7 -6-5-4-3-2-
Step5:y 1 2 3 4 5 6 7 8




\Sorting by reversals: 4 steps

Step0:n® 2 -4-3 5-8-7-6 1
Step 1: 2 3 4 5-8-7-6 1
Step2: -5-4-3-2-8-7-6 1
Step3: 54-3-2-16 7 8
Step4:y 1 2 3 4 5 6 7 8




\Sorting by reversals: 4 steps

Step0:mt 2 -4 -3 5 -
2 3 4 5 -
-5 4 -3 -2 -
-5 4 -3
1 2 3

Step 1:
Step 2:
Step 3:
Step 4: y

8 -7 6 1
8 -7 6 1
8 -7 6 1
-2 -1 6 7 8
4 5 6 7 8

What is the reversal distance for this
permutation? Can it be sorted in 3 steps?




Sorting By Reversals: A Greedy Algorithm

If sorting permutation z =12 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

The length of the already sorted prefix of 7 is
denoted prefix(r)

* prefix(r) = 3

This results in an idea for a greedy algorithm:
increase prefix(x) at every step



Greedy Algorithm: An Example

Doing so, # can be sorted
123645
123465

123156

Number of steps to sort permutation of
length nis at most (n— 1)



Greedy Algorithm: Pseudocode

SimpleReversalSort(x)

1 for i1 1to n- 1 #assuming that elements are from 1 to n
2 j U position of element i in z (i.e., ;= )

3 if j=i

4 x [ we apply p(i, ) onx

5

6

if 7 is the identity permutation
return r



Analyzing SimpleReversalSort

SimpleReversalSort does not guarantee the
smallest number of reversals and takes five
stepson 7=612345:

Step0: 612345
Step1: 162345
Step2: 126345
Step3:123645
Step4:123465




Analyzing SimpleReversalSort (cont'd)

But it can be sorted in two steps:
T = 612345
- Step1: 543216
- Step2: 123456
So, SimpleReversalSort(xz) is not optimal
But how good is it?



Analyzing SimpleReversalSort (cont'd)

But it can be sorted in two steps:
T = 612345
- Step1: 543216
- Step2: 123456
So, SimpleReversalSort(xz) is not optimal
But how good is it?

Optimal algorithms are unknown for many
problems; approximation algorithms are used



Approximation Algorithms

These algorithms find approximate solutions
rather than optimal solutions

The approximation ratio of an algorithm A on
the problem with input 7 is:

A(r) | OPT(x)
where

A(r) - solution produced by algorithm A
OPT(x) - optimal solution of the problem

(in our case, 7 1s an 1nstance of the reversal sorting
problem)



Approximation Algorithms

If an algorithm has an approximation ratio =
1.5, it means that the solution it finds is never

more than 150% of the optimal one.
- For example, if the minimum sorting requires 10

reversals, the approx algorithm will use at most
15.



Approximation Ratio

* For algorithm A that minimizes objective

function (minimization algorithm):
* max, . _ A(z) / OPT(n)

* For maximization algorithm:
° minlﬂl _, A(z) / OPT(n)



Can we do better than
SimpleReversalSort(1)?

Yes

Sometimes we need to characterize
better the problem to make more
sophisticated techniques



DISCLAIMER: DON'T BE
AFRAID

You are requested to understand the
general idea of greedy not how to
elaborate this more sophisticated
techniques (right now..)



Adjacencies and Breakpoints

T =T T,M,... T T
A pair of elements # .and = .,  are adjacent if
g = 21
For example:
r=1934738265

(3, 4) or (7, 8) and (6,5) are adjacent pairs




Breakpoints: An Example

There is a breakpoint between any adjacent
element that are non-consecutive:

=193 4|7 826 5

Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) form
breakpoints of permutation z



Breakpoints: An Example

There is a breakpoint between any adjacent
element that are non-consecutive:

t=11913 4|7 8|26 5
Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) form

breakpoints of permutation z
b(r) - # breakpoints in permutation =



Extending Permutations

We want to ensure that also the first and the last
element are in the right positions. To do that...
We put two elements = , =0 and = _, .=n+1 at
the ends of #

Example:
n=1bB34782d5
l Extending with 0 and 70
n=01|9/3 4/7 8|2|6 5|10
Note: A new breakpoint was created after extending

+



~ Sum up: Adjacency &
Breakpoints

*An adjacency - a pair of adjacent elements that are consecutive

A breakpoint - a pair of adjacent elements that are not consecutive

nt=5621 34 - ExtendnwithnOZOandn7=7

adjacencies

0 516 211 3l4 7

T b T

breakpoints




Reversal Distance and Breakpoints

Observation: each reversal eliminates at most 2
breakpoints.

T =2 311465

02|13 1416 5(7 b(z) =5
01324657 b(r) = 4
01234657 b(r) = 2
01234567 b(z) =0



Reversal Distance and Breakpoints

Observation: each reversal eliminates at most 2

breakpoints.
This implies:

reversal distance = #breakpoints / 2

n=|23|1|4
02!31|4
01324

6 5
6 5
6 5

/
/

0123465857
01234567

b(r) =5
b(rz) =4

b(r) = 2
b(z) =0



Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while b(z) > 0

2 Among all possible reversals,
choose reversal p minimizing b(x) after
its application

3 m [ apply p(i, j) on &
4 return r




Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while b(z) > 0

2 Among all possible reversals,
choose reversal p minimizing b(x) after
its application

3 m [ apply p(i, j) on &
4 return r

Problem: this algorithm may work
forever (we cannot reduce the
number of breakpoints anymore)



Can we do better than
BreakPointReversalSort(m)?

Yes

We need to characterize even better
the problem to exploit further aspects



Strips

Strip: an interval between two consecutive
breakpoints in a permutation

» Decreasing strip: strip of elements in
decreasing order (e.g. 6 5and 3 2).

* Increasing strip: strip of elements in increasing
order (e.g. 7 8)

0194378256170

* A single-element strip can be declared either increasing or
decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1



Reducing the Number of Breakpoints

Observation 1:

If permutation 7 contains at least one
decreasing strip, then there exists a
reversal p which decreases the number of
breakpoints (i.e. b(x) after p < b(x) )



Things To Consider
Form =14657832
0 114/6 5|7 8(3 2|9 b(x)=5

» Choose decreasing strip with the smallest
element kin 7z ( k= 2 in this case)



Things To Consider (contd)
Form =14657832
0 114/6 5|7 8|3 2|9 b(x)=5

» Choose decreasing strip with the smallest
element kin 7z ( k= 2 in this case)



Things To Consider (conta)

Forr =14657832
0 1|4/6 5|7 8|3 2|9 b(r) =95

» Choose decreasing strip with the smallest
element kin 7z ( k= 2 in this case)

* Find k- 1 in the permutation



Things To Consider (conta)

Forr =14657832
0 1/4/6 5|7 83 2|9 b(zx)=5

» Choose decreasing strip with the smallest
element kin 7z ( k= 2 in this case)

* Find k- 1 in the permutation
* Reverse the segment between k and k-7:
011416 5|7 8|3 2|9 b(r) =23

@4 38*756|4|9 b(r) = 4

—_— >




Reducing the Number of

Breakpoints Again

* If there is no decreasing strip, there may be no
reversal p that reduces the number of
breakpoints (i.e. b(x) after p = b(x) for any
reversal p).

* By reversing an increasing strip ( # of
breakpoints stay unchanged ), we will create a
decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (observation 1).



Things To Consider (conta)

There are no decreasing strips in 7z, for:

7 =0
0

12
p(6,7)onz=0 1 2

p(6,7) does not change the # of breakpoints

p(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints by doing p(6,2).



ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(xr)
1 while b(z) > 0
2 ifzhas a decreasing strip
Among all possible reversals, choose reversal p

that minimizes b(r) after p

else
Choose a reversal p that flips an increasing strip in =

[ apply ponr
return

N O vl p



\ ImprovedBreakpointReversalSort:
performance?

* ImprovedBreakPointReversalSort is the optimal
solution?




ImprovedBreakpointReversalSort:
performance?

ImprovedBreakPointReversalSort is the optimal

solution? Unfortunately, no..
ImprovedBreakPointReversalSort is an approximation

algorithm

« Optimal algorithm eliminates at most 2 breakpoints
in every step: d(z) 2 b(x) / 2

* It eliminates at least one breakpoint in every two
steps; at most 2b(x) steps

* Approximation ratio: 2b(z) / d(x)



\ ImprovedBreakpointReversalSort:
performance?

* ImprovedBreakPointReversalSort is the optimal
solution? Unfortunately, no..

* ImprovedBreakPointReversalSort is an approximation
algorithm

» Approximation ratio: 2b(x) / d(x)

« NOTE: we can compute d(x) for a specific instance of
7z but not for all the instance of sorting by reversal problem,
in this way we can compute the approximation ratio




Take home messages

When should we use Greedy
Algorithms?



When should we use Greedy Algorithms?

Simple and easy to understand

we follow a simple idea: for every subproblem, a greedy
algorithm tries to find the best optimal solution (e.g., in
ImprovedBreakpointReversalSort, choose reversal p that
minimizes b(1r) after p)



When should we use Greedy Algorithms?

Simple and easy to understand

we follow a simple idea: for every subproblem, a greedy
algorithm tries to find the best optimal solution (e.g., in
ImprovedBreakpointReversalSort, choose reversal p that
minimizes b(1r) after p)

This is also the limit: following a simple rule (or rules) for
all the subproblems might lead to naive solutions (i.e.,
solutions that consider the characteristics of every
subproblem missing details)




When should we use Greedy Algorithms?

Can be used as a building block for other algorithms: it
can be used as a starting point for developing more complex
algorithms.

We started with SimpleReversalSort
We improve it with BreakPointReversalSort
We improve it with ImprovedBreakpointReversalSort



When should we use Greedy Algorithms?

Fast and efficient (compared to other techniques)

example: SimpleReversalSort runs in O(n) (n size of
the vector )




When should we use Greedy Algorithms?

Provides a good enough solution (we have seen how
good today for one problem)

ImprovedBreakPointReversalSort still finding acceptable
approximate solutions (not the best ones)

We still don’t know an efficient algorithm computing the
optimal solution for sorting by reversal



