
Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Principles of Computer Science II
Dynamic Programming and Sequence Similarity

Marco Zecchini

Sapienza University of Rome

Lecture 9

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 1 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Sequence Similarity

We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).

Now we want to compare different sequences:

Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

A T A T A T A T
: : : : : : :
T A T A T A T A

At first glance the sequences seem very similar, but not identical.

We need a formal way to measure their similarity.

This leads us to the concept of an alignment and to dynamic
programming algorithms that compute it efficiently.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 2 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Sequence Similarity

We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).

Now we want to compare different sequences:

Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

A T A T A T A T
: : : : : : :
T A T A T A T A

At first glance the sequences seem very similar, but not identical.

We need a formal way to measure their similarity.

This leads us to the concept of an alignment and to dynamic
programming algorithms that compute it efficiently.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 2 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Sequence Similarity

We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).

Now we want to compare different sequences:

Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

A T A T A T A T
: : : : : : :
T A T A T A T A

At first glance the sequences seem very similar, but not identical.

We need a formal way to measure their similarity.

This leads us to the concept of an alignment and to dynamic
programming algorithms that compute it efficiently.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 2 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Coin Change Problem

We know that the greedy solution is not good..

... we are only left with a brute-force approach that is
impractical

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 3 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 4 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 4 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 4 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

the best combination for 77− 1 = 76 cents, plus a 1-cent coin;

the best combination for 77− 3 = 74 cents, plus a 3-cent coin;

the best combination for 77− 7 = 70 cents, plus a 7-cent coin.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 4 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Same for 76 and, then, 75...

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 5 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

RecursiveChange

However, it computes the optimum amount of coin repeatedly

The optimal coin combination for 70 cents is recomputed
repeatedly nine times over and over as
(77− 7), (77− 3− 3− 1), (77− 3− 1− 3), (77− 1− 3−
3), (77− 3− 1− 1− 1− 1), (77− 1− 3− 1− 1− 1), (77−
1− 1− 3− 1− 1), (77− 1− 1− 1− 3− 1), (77− 1− 1− 1−
1− 3) and (77− 1− 1− 1− 1− 1− 1− 1).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 6 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

RecursiveChange

However, it computes the optimum amount of coin repeatedly

The optimal coin combination for 70 cents is recomputed
repeatedly nine times over and over as
(77− 7), (77− 3− 3− 1), (77− 3− 1− 3), (77− 1− 3−
3), (77− 3− 1− 1− 1− 1), (77− 1− 3− 1− 1− 1), (77−
1− 1− 3− 1− 1), (77− 1− 1− 1− 3− 1), (77− 1− 1− 1−
1− 3) and (77− 1− 1− 1− 1− 1− 1− 1).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 6 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

RecursiveChange

However, it computes the optimum amount of coin repeatedly

The optimal coin combination for 70 cents is recomputed
repeatedly nine times over and over as
(77− 7), (77− 3− 3− 1), (77− 3− 1− 3), (77− 1− 3−
3), (77− 3− 1− 1− 1− 1), (77− 1− 3− 1− 1− 1), (77−
1− 1− 3− 1− 1), (77− 1− 1− 1− 3− 1), (77− 1− 1− 1−
1− 3) and (77− 1− 1− 1− 1− 1− 1− 1).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 6 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Reverse the order (look at line 2)...

Leverage previously computed solutions to form solutions to larger
problems and avoid all this recomputation

We compute a solution for each possible amount of money m from
1 to M and, since it takes d steps, to find the right coin the cost is
O(Md).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 7 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Dynamic programming solves problems by combining the
solutions to subproblems.

“Programming” refers to a tabular method, not to writing
computer code.

Dynamic programming applies when the subproblems overlaps
- that is, when subproblems share subsubproblems

A dynamic-programming algorithm solves each subsubproblem
just once and then saves its answer in a table, thereby
avoiding the work of recomputing the answer every time it
solves each subsubproblem

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 8 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Sequence Similarity

We looked for repeating patterns within DNA sequences.
How can we measure the similarity between different sequences?

Similarity of ATATATAT vs TATATATA

A T A T A T A T
: : : : : : :
T A T A T A T A

same length!

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 9 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Sequence Similarity

We looked for repeating patterns within DNA sequences.
How can we measure the similarity between different sequences?

Similarity of ATATATAT vs TATATATA

A T A T A T A T
: : : : : : :
T A T A T A T A

Alignment of ATATATAT vs TATATATA

A T A T A T A T -
: : : : : : :

- T A T A T A T A

(An alignment places the two sequences one above the other, possibly
inserting gaps “–”, to show how their symbols correspond.)

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 9 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Edit Distance

We use the notion of Vladimir Levenshtein introduced in 1966
Edit distance – the minimum number of editing operations
needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATAAT

A T A T A T A T
: : : : : : :

- T A T A - A T

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 10 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Edit Distance

Alignment of TGCATAT vs ATCCGAT

TGCATAT
↓ delete last T

TGCATA
↓ delete last A

TGCAT
↓ insert A at the front

ATGCAT
↓ substitute C for G in the third position

ATCCAT
↓ insert a G before the last A

ATCCGAT

Five operations.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 11 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Edit Distance

Alignment of TGCATAT vs ATCCGAT

TGCATAT
↓ insert A at the front

ATGCATAT
↓ delete T in the sixth position

ATGCAAT
↓ substitute G for A in the fifth position

ATGCGAT
↓ substitute C for G in the third position

ATCCGAT

Four operations.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 12 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Edit Distance

Vladimir Levenshtein defined the notion of Edit distance
Did not provide an algorithm to compute it.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 13 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Manhattan Tourist Problem

Sightseeing tour in
Manhattan where a group of
tourists wants to walk from
the corner of 59th Street
and 8th Avenue to the
Chrysler Building.

Many attractions along the
way and the tourists want to
see as many attractions as
possible.

The tourists can move either
to the south or to the east,
but even so, they can choose
from many different paths.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 14 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Manhattan Tourist Problem as a graph

We can represent this
gridlike structure as a graph

Intersections are verteces

Streets are edges that are
oriented either towards
south (↓) or east (→) and
have a weight

A path is a continuous
sequence of edges, and the
length of a path is the sum
of the edge weights in the
path

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 15 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Problem statement

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 16 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Greedy approach

Always pick the maximum
edge for each vertex

Can we do better?

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 17 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Greedy approach

Always pick the maximum
edge for each vertex

Can we do better?

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 17 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: easier subproblems

Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (i , j) with
0 ≤ i ≤ n, 0 ≤ j ≤ m.

Let si ,j denotes the optimal
solution for the vertex (i , j).

Finding s0,j (for 0 ≤ j ≤ m)
is not hard because tourists
cannot choose an arbitrary
path: they can only go east.

The same for si ,0 (for
0 ≤ i ≤ n).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 18 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: easier subproblems

Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (i , j) with
0 ≤ i ≤ n, 0 ≤ j ≤ m.

Let si ,j denotes the optimal
solution for the vertex (i , j).

Finding s0,j (for 0 ≤ j ≤ m)
is not hard because tourists
cannot choose an arbitrary
path: they can only go east.

The same for si ,0 (for
0 ≤ i ≤ n).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 18 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: easier subproblems

Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (i , j) with
0 ≤ i ≤ n, 0 ≤ j ≤ m.

Let si ,j denotes the optimal
solution for the vertex (i , j).

Finding s0,j (for 0 ≤ j ≤ m)
is not hard because tourists
cannot choose an arbitrary
path: they can only go east.

The same for si ,0 (for
0 ≤ i ≤ n).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 18 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: easier subproblems

Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (i , j) with
0 ≤ i ≤ n, 0 ≤ j ≤ m.

Let si ,j denotes the optimal
solution for the vertex (i , j).

Finding s0,j (for 0 ≤ j ≤ m)
is not hard because tourists
cannot choose an arbitrary
path: they can only go east.

The same for si ,0 (for
0 ≤ i ≤ n).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 18 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Let us find the solution for
s1,1.

Tourist can arrive to (1, 1)
in only two ways: from
(0, 1) or from (1, 0)

The best path will be: either
(1) s0,1 + the weight from
(0, 1) to (1, 1) or (2) s1,0 +
the weight from (1, 0) to
(1, 1).

We take the largest value.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 19 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Similar logic to s2,1, s3,1 and
so on.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 20 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Let us find the solution for
s1,2.

Tourist can arrive to (1, 2)
in only two ways: from
(1, 1) or from (2, 0)

The best path will be: either
(1) s1,1 + the weight from
(1, 1) to (1, 2) or (2) s0,2 +
the weight from (0, 2) to
(1, 2).

We take the largest value.

Similar logic to s2,2, s3,2 and
so on.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 21 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

We can compute the optimal solution for each vertex with this
approach.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 22 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: the algorithm

↓
w two-dimensional array
representing the weights of
the grid’s edges that run
north to south
→
w is a two-dimensional array
representing the weights of
the grid’s edges that run
west to east.

The cost is O(nm)

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 23 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

DP Approach: the algorithm

↓
w two-dimensional array
representing the weights of
the grid’s edges that run
north to south
→
w is a two-dimensional array
representing the weights of
the grid’s edges that run
west to east.

The cost is O(nm)

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 23 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Manhattan Tourist Problem

Steps to design a DP algorithm.

Dynamic programming typically applies to optimization problems:
each solution has a value (i.e., it is a number) and you want to
find a solution with the optimal (minimum or maximum) value.
To develop a dynamic-programming algorithm, follow a sequence
of four steps:

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution, typically in a
bottom-up fashion.

4 Construct an optimal solution from computed information.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 24 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

When do we use DP in
bioinformatics?

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 25 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Edit Distance

Edit Distance

We use the notion of Vladimir Levenshtein introduced in 1966
Edit distance – the minimum number of editing operations
needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATAAT

A T A T A T A T
: : : : : : :

- T A T A - A T

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 26 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit Distance Algorithm using Dynamic Programming

Assume two strings:
v (of n characters)
w (of m characters)

The alignment of v ,w is a two-row matrix such that
first row: contains the characters of v (in order)
second row: contains the characters of w (in order)
spaces are interspersed throughout the table, no replaces

Characters in each string appear in order, though not
necessarily adjacently.

A T - G T T A T -

A T C G T - A - C

No column contains spaces in both rows.
At most n +m columns.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 27 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit Distance Algorithm using Dynamic Programming

A T - G T T A T -

A T C G T - A - C

Matches – columns with the same letter,
Mismatches – columns with different letters.
Columns containing one space are called indels

Space on top row: insertions
Space on bottom row: deletions

#matches + #mismatches + # indels < n + m

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 28 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Representing the rows

v A T - G T T A T -

w A T C G T - A - C

One way to represent v
AT-CGTAT-

One way to represent w
ATCGT-A-C

Another way to represent v
AT-CGTAT-
122345677
number of symbols of v present up to a given position

Similarly, to represent w
ATCGT-A-C
123455667

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 29 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Representing the rows

v A T - G T T A T -

w A T C G T - A - C

v 1 2 2 3 4 5 6 7 7

w 1 2 3 4 5 5 6 6 7

can be viewed as a coordinate in 2-dimensional n ×m grid:(
0
0

) (
1
1

) (
2
2

) (
2
3

) (
3
4

) (
4
5

) (
5
5

) (
6
6

) (
7
6

) (
7
7

)
The entire alignment is simply a path:

(0, 0) → (1, 1) → (2, 2) → (2, 3) → (3, 4) → (4, 5) → (5, 5) →
(6, 6) → (7, 6) → (7, 7)

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 30 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit distance graph

Edit graph: a grid of n,m size.
The edit graph will help us in calculating the edit distance.
Alignment: a path from (0, 0) to (n,m).
Every alignment corresponds to a path in the edit graph.

Diagonal movement at point i , j correspond to column

(
vi
wj

)
Horizontal movement correspond to column

(
−
wj

)
Vertical movement correspond to column

(
vi
−

)

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 31 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit distance graph

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 32 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit Distance Recurrence

Let si ,j be the number of transformations for the i-prefix of vi
and j-prefix of wi

si ,0 = i and s0,j = j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m

si ,j satisfies the following recurrence:

si ,j = min


si−1,j + 1

si ,j−1 + 1

si−1,j−1, if vi = wj

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 33 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Edit Distance Python program

def edit_distance(s1, s2):

m=len(s1)+1

n=len(s2)+1

tbl = {}

for i in range(m): tbl[i,0]=i

for j in range(n): tbl[0,j]=j

for i in range(1, m):

for j in range(1, n):

cost = 0 if s1[i-1] == s2[j-1] else 1

tbl[i,j] = min(tbl[i, j-1]+1 ,

tbl[i-1, j]+1,

tbl[i-1, j-1]+ cost)

return tbl[i,j]

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 34 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Scoring the alignment

In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

More generally, instead of minimizing a cost we can maximize a
score.

We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

By choosing different scoring functions we obtain different string
comparison problems (e.g., LCS, global alignment, etc.).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 35 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Scoring the alignment

In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

More generally, instead of minimizing a cost we can maximize a
score.

We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

By choosing different scoring functions we obtain different string
comparison problems (e.g., LCS, global alignment, etc.).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 35 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Scoring the alignment

In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

More generally, instead of minimizing a cost we can maximize a
score.

We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

By choosing different scoring functions we obtain different string
comparison problems (e.g., LCS, global alignment, etc.).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 35 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Scoring the alignment

In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

More generally, instead of minimizing a cost we can maximize a
score.

We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

By choosing different scoring functions we obtain different string
comparison problems (e.g., LCS, global alignment, etc.).

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 35 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Longest Common Subsequence (LCS)

...if +1 if in vi and wi same letter, 0 otherwise...

Similar problem to Edit Distance

A subsequence is an ordered sequence of characters (not
necessarily, consecutive).

For ATTGCTA, AGCA is a subsequence, TGTT is not.

A subsequence is common to two strings if it is a subseq of
them both

TCTA is a common to both ATCTGAT and TGCATA

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 36 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

LCS Edit Graph

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 37 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

LCS Edit Graph

Similar to Manhattan Tourist problem

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 37 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Recurrence in LCS

Let si ,j be the length of LCS for the i-prefix of vi and j-prefix
of wi

si ,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m

si ,j satisfies the following recurrence:

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 38 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Recurrence in LCS

Let si ,j be the length of LCS for the i-prefix of vi and j-prefix
of wi

si ,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m

si ,j satisfies the following recurrence:

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 38 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Recurrence in LCS

Let si ,j be the length of LCS for the i-prefix of vi and j-prefix
of wi

si ,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m

si ,j satisfies the following recurrence:

si ,j = max


si−1,j + 0

si ,j−1 + 0

si−1,j−1 + 1, if vi = wj

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 38 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

LCS Algorithm

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 39 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Global Sequence Alignment

The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

To generalize scoring, we extend the k-letter alphabet to
include the gap character “-”, and consider an arbitrary
(k + 1)× (k + 1) scoring matrix δ.

The score of the column (x , y) in the alignment is δ(x , y) and
the alignment score is defined as the sum of the scores of the
columns. The recurrence will be:

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 40 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Global Sequence Alignment

The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

To generalize scoring, we extend the k-letter alphabet to
include the gap character “-”, and consider an arbitrary
(k + 1)× (k + 1) scoring matrix δ.

The score of the column (x , y) in the alignment is δ(x , y) and
the alignment score is defined as the sum of the scores of the
columns. The recurrence will be:

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 40 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

Global Sequence Alignment

The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

To generalize scoring, we extend the k-letter alphabet to
include the gap character “-”, and consider an arbitrary
(k + 1)× (k + 1) scoring matrix δ.

The score of the column (x , y) in the alignment is δ(x , y) and
the alignment score is defined as the sum of the scores of the
columns. The recurrence will be:

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 40 / 41



Coin Change Problem Manhattan Tourist Problem Sequence Alignment

Dynamic Programming

LCS, Edit Distance and Global Alignment

LCS Longest Common Subsequence.

Ops: Match / Skip (no substitution)

Score: +1 for match, 0 otherwise

Goal: maximize length

Use: find common patterns

Edit Distance Levenshtein distance.

Ops: Insert, Delete, Substitute

Cost: +1 per edit, 0 for match

Goal: minimize cost

Use: measure dissimilarity

Global Alignment Needleman–Wunsch algorithm.

Ops: Insert, Delete, Substitute (weighted)

Score: δ(x , y) from scoring matrix

Goal: maximize total score

Use: DNA / protein alignment

All rely on Dynamic Programming on an n ×m grid, differing only by scoring
and optimization objective.

M.Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similarity Lecture 9 41 / 41


	Coin Change Problem
	Manhattan Tourist Problem
	Edit Distance
	Manhattan Tourist Problem

	Sequence Alignment
	
	Edit Distance
	Dynamic Programming


