Principles of Computer Science Il

Dynamic Programming and Sequence Similarity

Marco Zecchini

Sapienza University of Rome

Lecture 9

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 1 /41

Sequence Similarity

@ We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).
@ Now we want to compare different sequences:

o Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

AT A T A T A T

TATATATA

M Zecchini PSR e S D P eSS Lectueo 2/ 41

Sequence Similarity

@ We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).
@ Now we want to compare different sequences:

o Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

AT A T A T A T

TATATATA

@ At first glance the sequences seem very similar, but not identical.

@ We need a formal way to measure their similarity.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 2 /41

Sequence Similarity

@ We want to look for repeating patterns within DNA sequences (e.g.,
detecting duplicated genes, repeated subsequences).

@ Now we want to compare different sequences:

o Are they similar? How many positions differ? Can we align
them to highlight similarities and differences?

Similarity of ATATATAT vs TATATATA

AT A T A T A T

TATATATA

@ At first glance the sequences seem very similar, but not identical.
@ We need a formal way to measure their similarity.

@ This leads us to the concept of an alignment and to dynamic
programming algorithms that compute it efficiently.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 2 /41

Coin Change Problem
00000

Coin Change Problem

United States Change Problem:
Convert some amount of money into the fewest number of coins.

Input: An amount of money, M, in cents.

Output: The smallest number of quarters g, dimes d, nickels
n, and pennies p whose values add to M (i.e., 25q + 10d +
n+p= M and q+d+n+ pis as small as possible).

o We know that the greedy solution is not good..

@ ... we are only left with a brute-force approach that is
impractical

M Zecchini PSR e S D e P eSS Lectureo 3/ 41

Coin Change Problem
0e0000

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

@ the best combination for 77 — 1 = 76 cents, plus a 1-cent coin;

M Zecchini PSR e S D P eSS Lectureo 4/ 41

Coin Change Problem
0e0000

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

@ the best combination for 77 — 1 = 76 cents, plus a 1-cent coin;

@ the best combination for 77 — 3 = 74 cents, plus a 3-cent coin;

M Zecchini PSR e S D P eSS Lectureo 4/ 41

Coin Change Problem
000000

Finding the best combination

Suppose you need to make change for 77 cents and the only coin

denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

@ the best combination for 77 — 1 = 76 cents, plus a 1-cent coin;
@ the best combination for 77 — 3 = 74 cents, plus a 3-cent coin;
@ the best combination for 77 — 7 = 70 cents, plus a 7-cent coin.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 4 /41

Coin Change Problem
0e0000

Finding the best combination

Suppose you need to make change for 77 cents and the only coin
denominations available are 1, 3, and 7 cents.
The best combination for 77 cents will be one of the following:

@ the best combination for 77 — 1 = 76 cents, plus a 1-cent coin;
@ the best combination for 77 — 3 = 74 cents, plus a 3-cent coin;

@ the best combination for 77 — 7 = 70 cents, plus a 7-cent coin.

bestNumCoinsy—1 + 1

bestNumCoinsy = min g best NumCoinsy; 3+ 1
bestNumCoinsy, -+ 1

M Zecchini PSR e S D P eSS Lectureo 4/ 41

Coin Change Problem
[e]e] lele]e]

Same for 76 and, then, 75...

M.Zecchini

[77 T76 T75 [7a [73 [72 J71 70 J69 Je6s Jo7]

[76 T75 J7a [73 72 [71 J70 69 68 J67 |

[75 T7a T3 J72] 71 [70 J69 [68 J67 |

Figure 6.1 The relationships between optimal solutions in the Change problem. The
smallest number of coins for 77 cents depends on the smallest number of coins for 76,
74, and 70 cents; the smallest number of coins for 76 cents depends on the smallest
number of coins for 75, 73, and 69 cents, and so on.

Lecture 9

5 /41

Coin Change Problem
[e]e]e] le]e]

RecursiveChange

RECURS[VECHANGE(;’U. c. d)
1 if M=0

2 return 0

3 bestNumCoins — oo

4 fori— ltod

5 if M=e

6 numCoins — RECURSIVECHANGE(M —¢;. ¢, d)
7 if numCoins + 1 < best NumCoins

8 bestNumCoins — numCoins + 1

9 return best NumCoins

M Zecchini PSR e S D P eSS Lectureo 6/ 41

Coin Change Problem
[e]e]e] le]e]

RecursiveChange

RECURSIVECHANGE(;’U. c. d)
1 if M=0

2 return 0

3 bestNumCoins — oo

4 fori— ltod

5 if M=e

6 numCoins — RECURSIVECHANGE(M —¢;. ¢, d)
7 if numCoins + 1 < best NumCoins

8 bestNumCoins — numCoins + 1

9 return best NumCoins

@ However, it computes the optimum amount of coin repeatedly

M Zecchini PSR e S D P eSS Lectureo 6/ 41

Coin Change Problem
[e]e]e] le]e]

RecursiveChange

RECURSIVECHANGE(;’U. c,d)

1 if M=0

2 return 0

3 bestNumCoins — oo

4 fori—1tod

5 if M=e

6 numCoins — RECURSIVECHANGE(M — ¢;. ¢, d)
7 if numCoins + 1 < best NumCoins

8 bestNumCoins — numCoins + 1

9 return best NumCoins

@ However, it computes the optimum amount of coin repeatedly

@ The optimal coin combination for 70 cents is recomputed
repeatedly nine times over and over as
(77—-7),(77—=3-3-1),(77—=3—-1-3),(77—1—-3 —
3),(77-3-1-1-1-1),(77—-1-3-1-1-1),(77 —
1-1-3-1-1),(77-1-1-1-3-1),(77-1-1—-1—
1-3)and (77-1-1-1-1-1-1-1).

M Zecchini PSR e S D P eSS Lecture o 6/ 41

Coin Change Problem
0000e0

Reverse the order (look at line 2)...

Leverage previously computed solutions to form solutions to larger
problems and avoid all this recomputation
DPCHANGE(M, e, d)

1 bestNumCoinsy — 0
2 form—1ltoM

3 best NumCoins,, — o

4 for i — ltod

5 if m>c

6 if best NumCoins,,_.. + 1 < best NumCoins,,
7 best NumCoins,, — bestNumCoins,,_., + 1
8 return best NumCoinsar

We compute a solution for each possible amount of money m from
1 to M and, since it takes d steps, to find the right coin the cost is
O(Md).

M Zecchini PSR e S D P eSS Lectureo 7/ 41

Coin Change Problem
00000e

Dynamic Programming

@ Dynamic programming solves problems by combining the
solutions to subproblems.

@ "Programming” refers to a tabular method, not to writing
computer code.

@ Dynamic programming applies when the subproblems overlaps
- that is, when subproblems share subsubproblems

@ A dynamic-programming algorithm solves each subsubproblem
just once and then saves its answer in a table, thereby
avoiding the work of recomputing the answer every time it
solves each subsubproblem

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 8 /41

Manhattan Tourist Problem
[Jelele]e]

Sequence Similarity

@ We looked for repeating patterns within DNA sequences.
@ How can we measure the similarity between different sequences?

Similarity of ATATATAT vs TATATATA

AT AT ATA T

TATATATA

Hamming distance %7 31languages v
Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article includes a list of general references, but it lacks sufficient corresponding
| 2| inline citations. Please help to improve this article by introducing more precise

citations. (May 2015) (Learn how 0 remove ths message)

In information theory, the Hamming distance between two strings or vectors of Hamming distance
equal length is the number of positions at which the corresponding symbols are B -
different. In other words, it measures the minimum number of substitutions % ﬁ—,g

same length!

M Zecchini Principles of Computer Science II: Dynamic Programming and Sequence Similary Lecture 8 9/ 41

Manhattan Tourist Problem
€0000

dit Distance

Sequence Similarity

@ We looked for repeating patterns within DNA sequences.
@ How can we measure the similarity between different sequences?

Similarity of ATATATAT vs TATATATA

AT AT ATA T

TATATATA

Alignment of ATATATAT vs TATATATA

AT AT A TAT -

—TATATATA

(An alignment places the two sequences one above the other, possibly
inserting gaps ‘=", to show how their symbols correspond.)

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 9 /41

Manhattan Tourist Problem
o] Jelele]

Edit Distance

@ We use the notion of Vladimir Levenshtein introduced in 1966
e Edit distance — the minimum number of editing operations

needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATAAT

AT A TATAT

- T AT A - AT

M Zecchini PRSI S D P eSS Lectures 10/ 41

Manhattan Tourist Problem
00000

Edit Distance

Edit Distance

Alignment of TGCATAT vs ATCCGAT

TGCATAT

$ delete last T
TGCATA

A delete last A

TGCAT

+ insert A at the front
ATGCAT

4 substitute C for G in the third position
ATCCAT

4 insert a G before the last A
ATCCGAT

Five operations.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 11 /41

Manhattan Tourist Problem
00000

dit Distance

Edit Distance

Alignment of TGCATAT vs ATCCGAT

TGCATAT

1 insert A at the front
ATGCATAT

1 delete T in the sixth position
ATGCAAT

$ substitute G for A in the fifth position
ATGCGAT

J substitute C for G in the third position
ATCCGAT

Four operations.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 12 / 41

Manhattan Tourist Problem
[e]e]ele]]

Edit Distance

@ Vladimir Levenshtein defined the notion of Edit distance
@ Did not provide an algorithm to compute it.

M Zecchini PSR e S D P e SIS Lecture 13/ 41

Manhattan Tourist Problem
@®0000000000

Manhattan Tourist Problem

@ Sightseeing tour in
Manhattan where a group of
tourists wants to walk from
the corner of 59th Street
and 8th Avenue to the
Chrysler Building.

@ Many attractions along the
way and the tourists want to
see as many attractions as
possible.

@ The tourists can move either
to the south or to the east,
but even so, they can choose
from many different paths.

M Zecchini PRSI S D P eSS Lectures 14/ 41

Manhattan Tourist Problem
O@000000000

Manhattan Tourist Problem as a graph

We can represent this
gridlike structure as a graph

,

@ Intersections are verteces

@ Streets are edges that are
oriented either towards
south ({) or east (—) and ‘ o
have a weight O Q

@ A path is a continuous
sequence of edges, and the
length of a path is the sum !) ‘
of the edge weights in the O—0O0—0—0—0
path

\
J
Y

M Zecchini PRSI S D P e SIS Lecture s 15/ 41

Manhattan Tourist Problem
0O0@00000000

Problem statement

Manhattan Tourist Problem:
Find a longest path in a weighted grid.

Input: A weighted grid & with two distinguished vertices:
a source and a sink.

Output: A longest path in G from source to sink.

M Zecchini PSR S D P e SIS Lecture 16/ 41

Manhattan Tourist Problem
000e0000000

Greedy approach

o Always pick the maximum
edge for each vertex

M Zecchini PSR S D P eSS Lectures 17/ 41

Manhattan Tourist Problem
000e0000000

Greedy approach

o Always pick the maximum
edge for each vertex

@ Can we do better?

M Zecchini PSR S D P eSS Lectures 17/ 41

Manhattan Tourist Problem
0O000e000000

DP Approach: easier subproblems

@ Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (/,j) with
0<i<n0<j<m

M Zecchini PSR S D P e SIS Lectured 18/ 41

Manhattan Tourist Problem
0O000e000000

DP Approach: easier subproblems

@ Let us solve a more general
problem: find the longest

path from source to an
arbitrary vertex (/,j) with
0<i<n0<j<m —)- —)-O—)-

@ Let s;; denotes the optimal 4 l ls
solution for the vertex (i,).

8

) : "“—2>O—*()

Lecture 9 18 / 41

M.Zecchini

Manhattan Tourist Problem
0O000e000000

DP Approach: easier subproblems

@ Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (/,j) with
0<i<n0<;<m —)- —»O—)—

@ Let s;; denotes the optimal 4 l ls i ‘L
solution for the vertex (i,). K)_‘,f_ﬂ()_,()

e Finding spj (for 0 <j < m) 1 J,
is not hard because tourists

cannot choose an arbitrary
path: they can only go east.

8

) : "“—2>O—*()

Lecture 9 18 / 41

M.Zecchini

Manhattan Tourist Problem
0O000e000000

DP Approach: easier subproblems

@ Let us solve a more general
problem: find the longest
path from source to an
arbitrary vertex (/,j) with
0<i<n0<;<m —)- —»O—)—

@ Let s;; denotes the optimal 4 l ls i ‘L
solution for the vertex (i,). K)_‘,f_ﬂ()_,()

e Finding spj (for 0 <j < m) 1 J,
is not hard because tourists

cannot choose an arbitrary
path: they can only go east.

8

) : "“—2>O—*()

@ The same for s; ¢ (for
0<i<n).

Lecture 9 18 / 41

M.Zecchini

Manhattan Tourist Problem
0O0000e00000

@ Let us find the solution for

3 2 4 0
1,1 (?—.(?—»%)—.(?—.?
e Tourist can arrive to (1,1) AN DA &
in only two ways: from ?—) 05050
4 6

(0,1) or from (1,0)

0 T 3
@ The best path will be: either O_’O_’Q_’
(1) so,1 + the weight from

o s
(0,1) to (1,1) or (2) s10 + O—=0O0—-0-=-0

the weight from (1,0) to
(1,1).
@ We take the largest value.

M.Zecchini Lecture 9 19 / 41

Manhattan Tourist Problem
00000080000

(]
[2+]
'S
=]
()

<O

@ Similar logic to 1, s31 and
S0 on.

O<0O

im
O<

Lecture 9 20 / 41

M.Zecchini

Manhattan Tourist Problem
0O000000e000

@ Let us find the solution for
51,2-

e Tourist can arrive to (1,2)
in only two ways: from
(1,1) or from (2,0)

@ The best path will be: either
(1) s1,1 + the weight from
(1,1) to (1,2) or (2) sp2 +
the weight from (0,2) to
(1,2).

@ We take the largest value.

e Similar logic to 52, s32 and
so on.

M.Zecchini Lecture 9 21 /41

Manhattan Tourist Problem
00000000800

We can compute the optimal solution for each vertex with this
approach.

o — maxd Sl + weight of the edge between (i — 1, j) and (2,7)
TR s o1 + weight of the edge between (7,7 — 1) and (i,)

+O+Q=0+0
O+Q O OO

M.Zecchini

Lecture 9 22 /41

Manhattan Tourist Problem
00000000080

DP Approach: the algorithm

| . .
@ w two-dimensional array

representing the weights of
the grid's edges that run

MANHATTANTOURIST(\%I. W, n, m)

1 spo<—0
2 fori—1lton
north to south 3 o sivot o
— . . . 4 for j— ltom _
w is a two-dimensional array 5 sug e st oy
. . 6 fori—lton
representing the weights of 7 forj—ltom
b
the grid's edges that run 8 g max) LTS
9 return s, ,, ? !

west to east.

Lecture 9

23 / 41

1 . .

w two-dimensional array
representing the weights of
the grid's edges that run
north to south

— . : :

w is a two-dimensional array
representing the weights of
the grid's edges that run
west to east.

@ The cost is O(nm)

MANHATTANTOURIST(\%I. W, n, m)

® N Ul W R

©

s0.0 — 0
for i— lton

810 — Si—1.0+ Wip
for j— ltom

80,5 < S0,j—1+ Wo,j
for i— lton

for j — ltom

1

Si—1,5+ Wi

Si g1+ Wi

Sij < max

return s, ,,,

Lecture 9

Manhattan Tourist Problem
00000000080

DP Approach: the algorithm

23 / 41

Manhattan Tourist Problem
0000000000@

Manhattan Tourist Problem

Steps to design a DP algorithm.

Dynamic programming typically applies to optimization problems:
each solution has a value (i.e., it is a number) and you want to
find a solution with the optimal (minimum or maximum) value.
To develop a dynamic-programming algorithm, follow a sequence
of four steps:

@ Characterize the structure of an optimal solution.
@ Recursively define the value of an optimal solution.

© Compute the value of an optimal solution, typically in a
bottom-up fashion.

@ Construct an optimal solution from computed information.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 24 /41

When do we use DP in

bioinformatics?

M Zecchini PSR e S D P eSS Lectures 25/ 41

Sequence Alignment
[]

Edit Distance

@ We use the notion of Vladimir Levenshtein introduced in 1966
e Edit distance — the minimum number of editing operations

needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATAAT

AT A TATAT

- T AT A - AT

M Zecchini PSR e S D P e SIS Lectured 26/ 41

Sequence Alignment
©00000000000000
Dynamic Programming

Edit Distance Algorithm using Dynamic Programming

@ Assume two strings:

o v (of n characters)

o w (of m characters)
@ The alignment of v, w is a two-row matrix such that

o first row: contains the characters of v (in order)

e second row: contains the characters of w (in order)

@ spaces are interspersed throughout the table, no replaces
@ Characters in each string appear in order, though not

necessarily adjacently.

AlT|-|G|T|TIA|T]|-
A|lT|C|IG|T|-|A|]-]|C

@ No column contains spaces in both rows.
@ At most n+ m columns.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 27 /41

Sequence Alignment
O@0000000000000

Edit Distance Algorithm using Dynamic Programming

AIT|-|G|T|T|A|T]|-
AlT|C|G|T|-]A|-]|C

@ Matches — columns with the same letter,
@ Mismatches — columns with different letters.

@ Columns containing one space are called indels
e Space on top row: insertions
e Space on bottom row: deletions

matches + # mismatches + #indels < n + m

M Zecchini PSR S D P e SIS Lectured 28/ 41

Sequence Alignment
OO0®000000000000

Representing the rows

v A|IT|-|G|T|TJ|A|T|-
AlT|C|IG|T|-|]A]-]|C
@ One way to represent v
o AT-CGTAT-
@ One way to represent w
e ATCGT-A-C
@ Another way to represent v
o AT-CGTAT-

e 122345677

e number of symbols of v present up to a given position
@ Similarly, to represent w

o ATCGT-A-C

e 123455667

M Zecchini PSR e S D P e SIS Lectures 20/ 41

Sequence Alignment
000®00000000000
Dynamic Programming

Representing the rows

v A|T|-|G|T|T|A|T]|-
w A T|C|G|T|-]A|-]|C
v | 1|2]2|3|4|5|6|7]|7
w|l[2|3[4]|5/5]|6|6|7

can be viewed as a coordinate in 2-dimensional n x m grid:

HOBHOOOOE0

(0,0) - (1,1) —» (2,2) = (2,3) — (3,4) — (4,5) — (5,5) —
(6,6) — (7,6) — (7,7)

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 30 / 41

Sequence Alignment
000080000000000
Dynamic Programming

Edit distance graph

Edit graph: a grid of n, m size.

The edit graph will help us in calculating the edit distance.
Alignment: a path from (0,0) to (n, m).

Every alignment corresponds to a path in the edit graph.

® 6 6 ¢

. D Vi
Diagonal movement at point /,j correspond to column W’)
j

Horizontal movement correspond to column <)
Wi
j

: Vi
Vertical movement correspond to column

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 31 /41

Edit distance graph

w A T Cc G T A Cc

o | 1 | 2 | 3 | 4 | 5 | 6 | 7
v
AL ***l*?T'?T”?
1 —
T | NN N
2
¢ N |
3
T NN N
4
T.
A |
6
T NN NN
7 O
N N R N
A T - G T T A T -
A T C G T - A - C

M Zecchini PSR e S D P eSS Lectures 32/ 41

Sequence Alignment
0000008000 00000

Edit Distance Recurrence

@ Let s;; be the number of transformations for the i-prefix of v;
and j-prefix of w;
@sio=iandspj=j forall1<i<nand1<;<m
@ s;; satisfies the following recurrence:
si-1j+1
Sij = min Sij-1+ 1

si1j-1, fvi=w

M Zecchini PSR S D P e SIS Lectures 33/ 41

Sequence Alignment
0000000 e0000000

Edit Distance Python program

def edit_distance(sl, s2):
m=len(sl)+1
n=len(s2)+1

tbl = {}
for i in range(m): tbl[i,0]=1i
for j in range(m): tbl[0,jl=j
for i in range(1l, m):
for j in range (1, n):
cost = 0 if s1[i-1] == s2[j-1] else 1
tbl[i,j] = min(tbl[i, j-11+1,
tbl[i-1, jl+1,
tbl[i-1, j-1]+cost)

return tbl[i,j]

M Zecchini PRSI SO P eSS Lecture 34/ 41

Sequence Alignment
000000008000000
Dynamic Programming

Scoring the alignment

@ In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

@ This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

@ More generally, instead of minimizing a cost we can maximize a
score.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 35 /41

Sequence Alignment
000000008000000
Dynamic Programming

Scoring the alignment

@ In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

@ This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

@ More generally, instead of minimizing a cost we can maximize a
score.

@ We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 35 /41

Sequence Alignment
000000008000000
Dynamic Programming

Scoring the alignment

@ In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

@ This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

@ More generally, instead of minimizing a cost we can maximize a
score.

@ We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

@ Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 35 /41

Sequence Alignment
000000008000000
Dynamic Programming

Scoring the alignment

@ In the Edit Distance problem we minimized the number of
operations (insertions, deletions, substitutions) needed to
transform one sequence into another.

@ This can also be viewed as assigning a cost to each column of the
alignment: matches cost 0, edits cost 1.

@ More generally, instead of minimizing a cost we can maximize a
score.

@ We introduce the notion of a scoring function, which assigns a
value to each column (match, mismatch, or gap) and sums them up.

@ Example: +1 for a match, 0 otherwise. The total score is the sum
of column scores.

@ By choosing different scoring functions we obtain different string
comparison problems (e.g., LCS, global alignment, etc.).

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 35 /41

Sequence Alignment
000000000@00000
Dynamic Programming

Longest Common Subsequence (LCS)

..if +1 if in v; and w; same letter, O otherwise...
e Similar problem to Edit Distance

@ A subsequence is an ordered sequence of characters (not
necessarily, consecutive).

For ATTGCTA, AGCA is a subsequence, TGTT is not.

A subsequence is common to two strings if it is a subseq of
them both

@ TCTA is a common to both ATCTGAT and TGCATA

Longest Common Subsequence Problem:
Find the longest subsequerce common to two strings.

Input: Two strings, v and w.

Output: The longest common subsequence of v and w.

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 36 / 41

\

09— 00— @

\

LCS Edit Graph

Lecture 9 37 / 41

M.Zecchini

90— 00— @

Lecture 9 37 / 41

LCS Edit Graph

Similar to Manhattan Tourist problem

chini

M.Zec

Sequence Alignment
0000000000 0e000

Recurrence in LCS

@ Let s;; be the length of LCS for the i-prefix of v; and j-prefix
of w;

M Zecchini PRSI S D P e SIS Lecture 38/ 41

Sequence Alignment
0000000000 0e000

Recurrence in LCS

@ Let s;; be the length of LCS for the i-prefix of v; and j-prefix
of w;

@sio=s;=0fralll1</i<nand1<;<m

M Zecchini PRSI S D P e SIS Lecture 38/ 41

Sequence Alignment
0000000000 0e000

Recurrence in LCS

@ Let s;; be the length of LCS for the i-prefix of v; and j-prefix
of Wi
@sio=s;=0fralll1</i<nand1<;<m
@ s;; satisfies the following recurrence:
si—1;+0
sij=max4q sij-1+0

Si—1j-1+1, if v = w;

M Zecchini PRSP e S D P e SIS Lecture 38/ 41

Sequence Alignment
000000000000 e00

LCS Algorithm

LCS(v,w)
1 fori—Oton
2 sio—0
3 for j—1ltom
4 50, <0
5 fori—1lton
6 for j — ltom
Sis1j
7 Sij < max(q S;ij-1
si—1-1+ 1, ifv; =w;

8 return (s, ,,,b)

M Zecchini PSR e S D P e SIS Lectured 30/ 41

Sequence Alignment
0000000000000 e0

Global Sequence Alignment

@ The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

M Zecchini PSR e S D P e SIS Lecture 40/ 41

Sequence Alignment
0000000000000 e0

Global Sequence Alignment

@ The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

@ To generalize scoring, we extend the k-letter alphabet to
include the gap character “-", and consider an arbitrary
(k +1) x (k + 1) scoring matrix ¢.

M Zecchini PSR e S D P e SIS Lecture 40/ 41

Sequence Alignment
0000000000000e0
Dynamic Programming

Global Sequence Alignment

@ The LCS problem corresponds to a rather restrictive scoring
that awards 1 for matches and does not penalize indels.

@ To generalize scoring, we extend the k-letter alphabet to
include the gap character “-", and consider an arbitrary
(k+1) x (k + 1) scoring matrix ¢.

@ The score of the column (x,y) in the alignment is d(x,y) and
the alignment score is defined as the sum of the scores of the
columns. The recurrence will be:

Si—1,; +0(vi, —)
Sij =max{ s ;-1 +0(—, wj)
Si—1j—1 4+ 0w, wy)

M.Zecchini Principles of Computer Science Il: Dynamic Programming and Sequence Similarity Lecture 9 40 / 41

Sequence Alignment
000000000000 00e

LCS, Edit Distance and Global Alignment

LCS Longest Common Subsequence.
@ Ops: Match / Skip (no substitution)
@ Score: +1 for match, 0 otherwise
@ Goal: maximize length
@ Use: find common patterns
Edit Distance Levenshtein distance.
@ Ops: Insert, Delete, Substitute
@ Cost: +1 per edit, 0 for match
@ Goal: minimize cost
@ Use: measure dissimilarity
Global Alignment Needleman—Wounsch algorithm.
@ Ops: Insert, Delete, Substitute (weighted)
@ Score: §(x,y) from scoring matrix
@ Goal: maximize total score
@ Use: DNA / protein alignment
All rely on Dynamic Programming on an n x m grid, differing only by scoring
and optimization objective.

M Zecchini PSR e S D P e SIS Lecture 41/ 41

	Coin Change Problem
	Manhattan Tourist Problem
	Edit Distance
	Manhattan Tourist Problem

	Sequence Alignment
	
	Edit Distance
	Dynamic Programming

