

Principles of Computer Science II

Introduction to Graph Theory

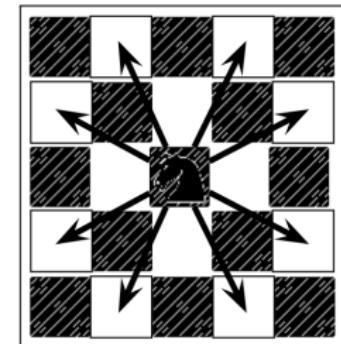
Marco Zecchini

Sapienza University of Rome

Lecture 6

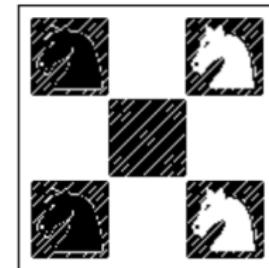
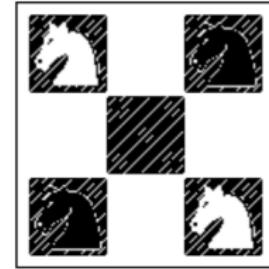
A little bit of Chess

- Knights move using a particular pattern.
- Knights can move two steps in any of four directions (left, right, up, and down) followed by one step in a perpendicular direction,
- Two points are connected by a line if moving from one point to another is a valid knight move.



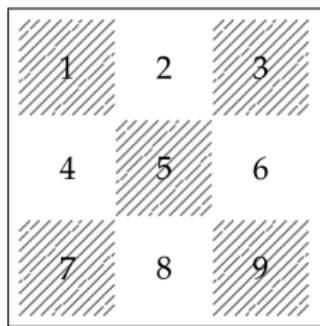
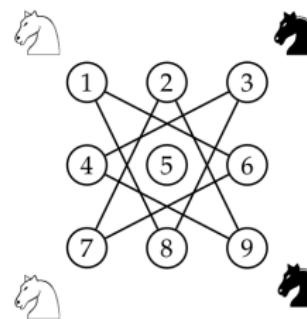
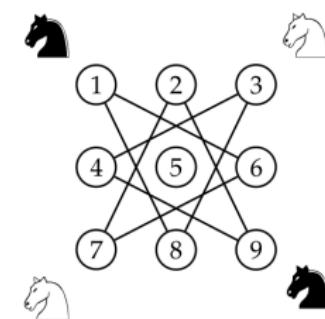
A Chess Puzzle

- Two white and two black knights on a 3×3 chessboard.
- Two Knights cannot occupy the same square.
- Starting from the top configuration,
- Can they move, using the usual chess knight's moves, to occupy the bottom configuration?



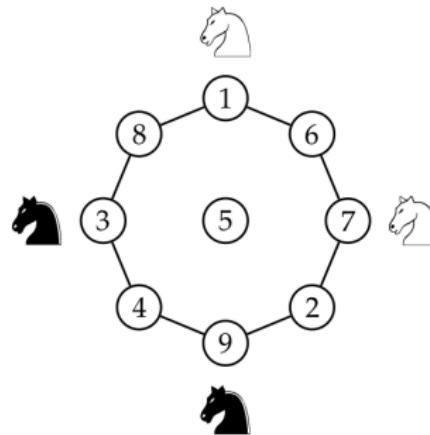
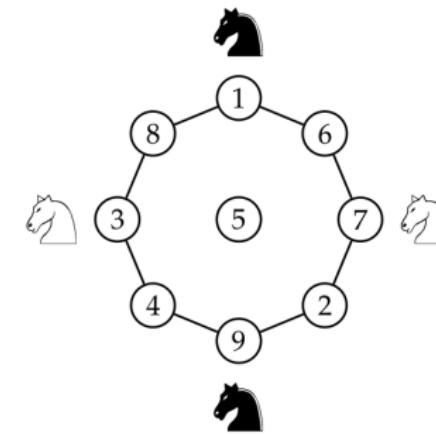
Chess Diagrams

- A Chess Diagram is used to represent movements of chess pieces on the board.
- Example of a 3×3 chessboard.
- Two points are connected by a line if moving from one point to another is a valid knight move.



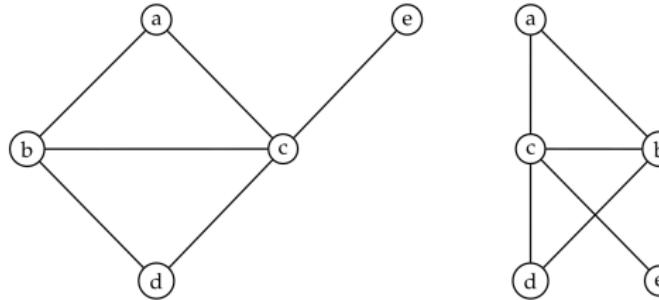
Chess Diagrams – Equivalent Representations

- An equivalent representation of the resulting diagram.
- Now it is easy to see that knights move around a “cycle”.
- Every knight’s move corresponds to moving to a neighboring point in the diagram – clockwise or counterclockwise
- white-white-black-black **cannot** be transformed into white-black-white-black



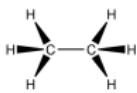
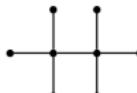
Chess Diagrams & Graphs

- Chess Diagrams are examples of *graphs*.
- The points are called vertices and lines are called edges.
- A simple graph of five vertices and six edges.
- We denote a graph by $G = G(V, E)$, where
 - V represents the set of vertices
 $V = \{a, b, c, d, e\}$
 - E represents the set of edges
 $E = \{(a, b), (a, c), (b, c), (b, d), (c, d), (c, e)\}$

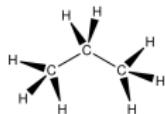
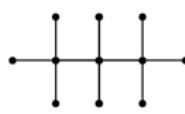


Hydrocarbons as Graphs and Structural Isomers

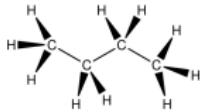
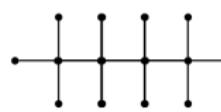
Methane



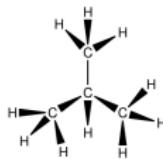
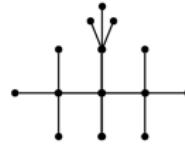
Ethane



Propane



Butane



Isobutane

Basic Definitions

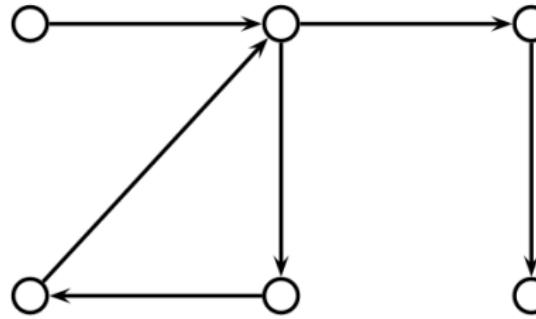
- We denote $|V| = n$ – the number of vertices.
- We denote $|E| = m$ – the number of edges.
- Two vertices u, v are called **adjacent** or **neighboring** vertices if there exists an edge $e = (u, v)$.
- We say that edge e is **incident** to vertices u and v .
- We say that vertices u and v are **incident** to edge e .
- A **loop** is an edge from a node to itself: (u, u) .
- Two or more edges that have the same endpoints (u, v) are called **multiple edges**.
- The graph is called **simple** if it does not have any loops or multiple edges.

Degree of the Vertex

- The number of edges incident to a given vertex v is called **the degree of the vertex** and is denoted $d(v)$.
- For every graph $G = G(V, E)$, $\sum_{u \in V} d(u) = 2 \cdot |m|$.
- Notice that an edge connecting vertices v and w is counted in the sum twice: first in the term $d(v)$ and again in the term $d(w)$.

Directed & Undirected Graphs

- Many Bioinformatics problems make use of **directed graphs**.
- An edge can be **undirected** or **directed**.
- An undirected edge e is considered an unordered pair, in other words we assume that (u, v) and (v, u) are the same edge.
- A directed edge $e = (u, v)$ and $e' = (v, u)$ are different edges.
- If the edges have a direction, the **graph is directed** (digraph).
- If a graph has no direction, it is referred as **undirected**.



Directed Graphs

- In directed graphs, each vertex u has:
 - $\text{indegree}(u)$ – the number of incoming edges,
 - $\text{outdegree}(u)$ – the number of outgoing edges.
- For every directed graph $G = G(V, E)$,

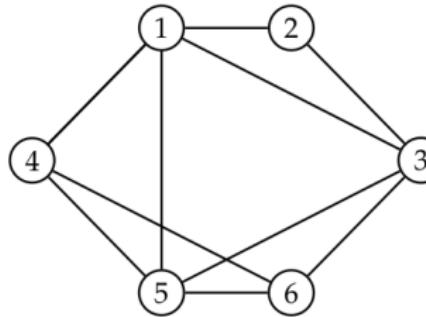
$$\sum_{u \in V} \text{indegree}(u) = \sum_{u \in V} \text{outdegree}(u)$$

Subgraphs & Complete Graphs

- A **subgraph** G' of G consists of a subset of V and E .
That is, $G' = (V', E')$ where $V' \subset V$ and $E' \subset E$.
- A **spanning subgraph** contains all the nodes of the original graph.
- If all the nodes in a graph are pairwise adjacent, the graph is called **complete**.

Triangles, Walks, Trails, Paths & Cycles

- A **triangle** in an undirected graph is a triplet (u, v, w) , where $u, v, w \in V$ such that $(u, v), (v, w), (w, u) \in E$.
- A **walk** is a sequence of vertices and edges of a graph – Vertex can be repeated. Edges can be repeated.
- **Trail** is a walk in which no edge is repeated.
- **Path** is a trail in which no vertex is repeated.
- Paths that start and end at the same vertex are referred to as **cycles**.

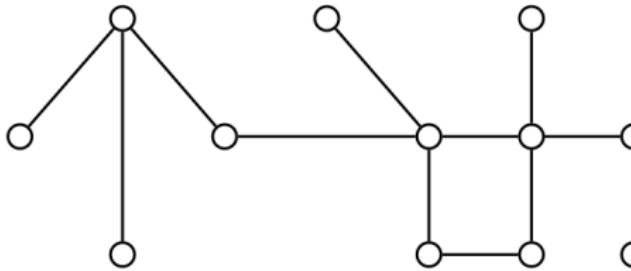


Paths

- A path of length k is a sequence of nodes (v_0, v_1, \dots, v_k) , where we have $(v_i, v_{i+1}) \in E$.
- If $v_i \neq v_j$ for all $0 \leq i < j \leq k$ we call the **path simple**.
- If $v_0 = v_k$ for all $0 \leq i < j \leq k$ and $v_0 = v_k$ the **path is a cycle**.
- A path from node u to node v is a path (v_0, v_1, \dots, v_k) such that $v_0 = u$ and $v_k = v$.

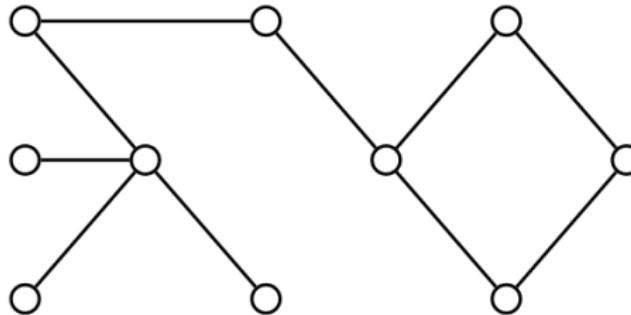
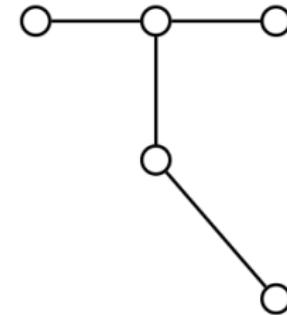
Graph Connectivity

- Two nodes u and v are **connected** if there is a path from u to v .
- A graph is called **connected** if all pairs of vertices can be connected by a path, otherwise we say that the graph is **disconnected**.
- A graph is called **complete** if there is an edge between every two vertices.



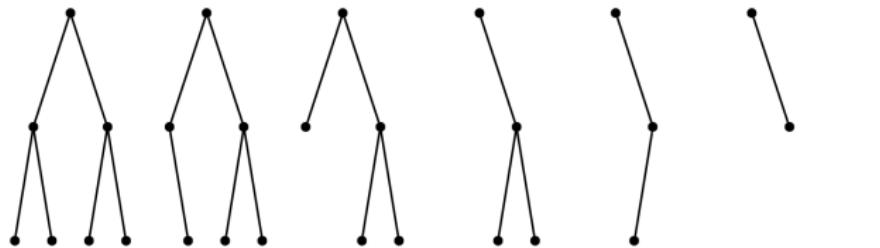
Graph Connectivity

- Disconnected graphs can be **decomposed** into a set of one or more **connected components**.



Forests & Trees

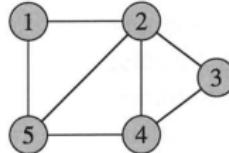
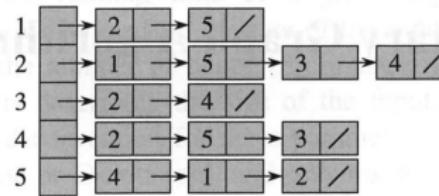
- A simple graph that does not contain any cycles is called a **forest**.
- A forest that is connected is called a **tree**.
- A tree has $n - 1$ edges.
- Any two of the following three statements imply that a graph is a tree (and thus they also imply the third one):
 - 1 The graph has $n - 1$ edges.
 - 2 The graph does not contain any cycles.
 - 3 The graph is connected.



Representation of Graphs

Representation of Graphs

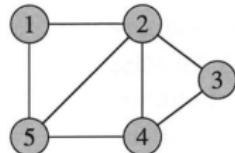
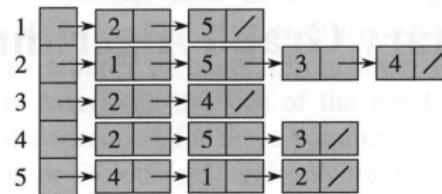
- Two standard ways to represent a graph $G(V, E)$:
 - A collection of adjacency lists.
 - Usually preferred for **sparse** graphs.
 - Sparse graph: $|E|$ is much less than $|V|^2$.
 - An adjacency matrix.
 - Usually preferred for **dense** graphs.
 - Dense graph: $|E|$ is close to $|V|^2$.



	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency List

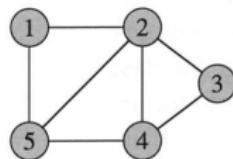
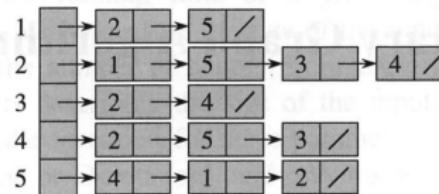
- Adjacency List Representation
- Consists of an array Adj of $|V|$ lists, one for each vertex in V .
- For each $u \in V$, the adjacency list $Adj[u]$ contains all the vertices adjacent to u in G .
- The vertices are stored in arbitrary order.



	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency List

- Adjacency List Representation
- Consists of an array Adj of $|V|$ lists, one for each vertex in V .
- For each $u \in V$, the adjacency list $Adj[u]$ contains all the vertices adjacent to u in G .
- The vertices are stored in arbitrary order.



	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

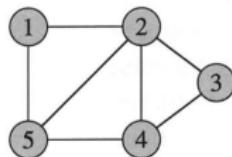
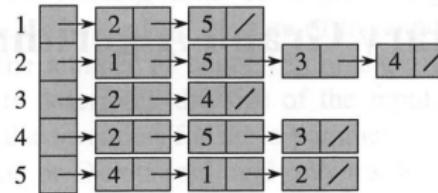
Question?

Does this remind you a data structure we saw last week?

Adjacency Matrix

- Adjacency Matrix Representation of $G(V, E)$
- We assume that vertices are numbered $1, 2, \dots, |V|$.
- The matrix $|V| \times |V|$ matrix.
- $A = (a_{i,j})$, where

$$a_{i,j} = \begin{cases} 1, & \text{if } (i,j) \in E. \\ 0, & \text{otherwise.} \end{cases}$$

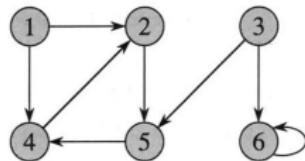
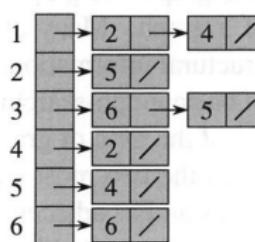


	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Representation of Graphs

Adjacency List and Adjacency Matrix Examples

- Adjacency Matrix Representation



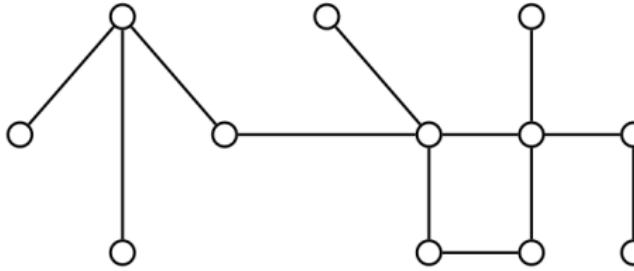
	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Paths

- A **path** is a sequence of vertices and edges of a graph – Vertices cannot be repeated. Edges cannot be repeated.
- A path of length k is a sequence of vertices (v_0, v_1, \dots, v_k) , where we have $(v_i, v_{i+1}) \in E$.
- If $v_i \neq v_j$ for all $0 \leq i < j \leq k$ we call the **path simple**.
- If $v_0 = v_k$ for all $0 \leq i < j \leq k$ and $v_0 = v_k$ the **path is a cycle**.
- A path from vertex u to vertex v is a path (v_0, v_1, \dots, v_k) such that $v_0 = u$ and $v_k = v$.

Shortest Paths

- A **shortest path** between vertices u and v is a path from u to v of minimum length.
- The distance $d(u, v)$ between vertices u and v is the length of a shortest path between u and v .
- If u and v are in different connected component then $d(u, v) = \infty$.

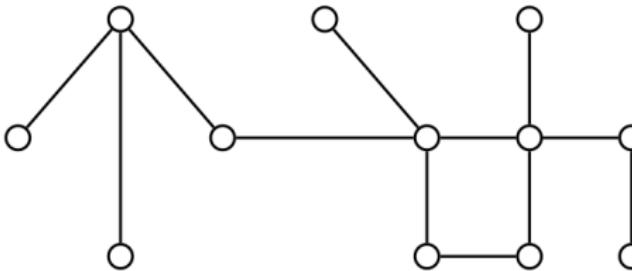


Graph Diameter

- The diameter D of a connected graph is the maximum (over all pairs of vertices in the graph) distance.

$$D = \max_{(u,v): u, v \text{ connected}} d(u, v)$$

- If a graph is disconnected then we define the diameter to be the maximum of the diameters of the connected components.



Breadth-first Search

- Given a graph $G(V, E)$ and a distinguished **source** vertex u ,
- breadth-first search systematically explores the edges of G to “discover” every vertex that is reachable from u .
- It computes the distance from u to each reachable vertex.
- It computes a spanning subgraph of G , the “breadth-first tree”, with root u that contains all reachable vertices.
- It computes all possible shortest paths starting from u :**
for any vertex v reachable from u , the path in the breadth-first tree from u to v corresponds to a “shortest path” from u to v in G .
- BFS works with unweighted graphs or graphs where all edges have the same costs.

Example of Execution of Breadth-First Search Algorithm

Initial Graph

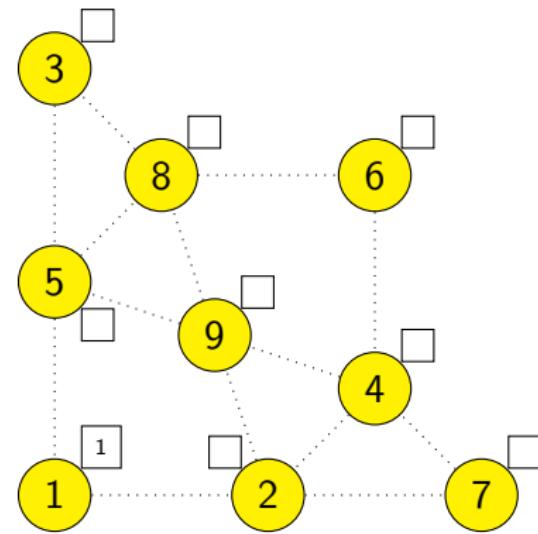
The graph contains 9 vertices, 14 edges

Vertex **1** is the **source** node.

Vertex **1** marked as **discovered**.

Vertices **2,5** marked as **frontier**.

All other vertices are not discovered.



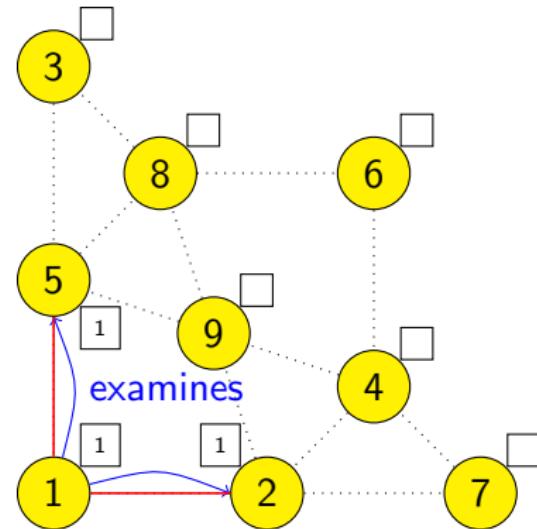
Example of Execution of Breadth-First Search Algorithm

1st Round

Vertex 1 **examines** adjacent vertices.

Vertices 2,5 marked as **discovered**.

Vertices 3,4,7,8,9 marked as the **frontier**.

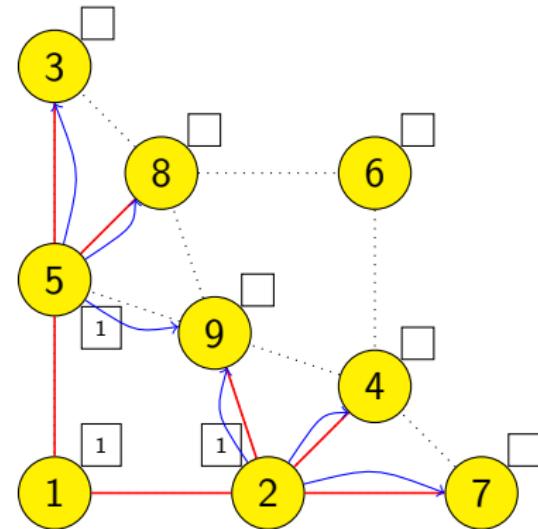


Example of Execution of Breadth-First Search Algorithm

2nd Round

Vertices **3,4,7,8,9** marked as **discovered**.

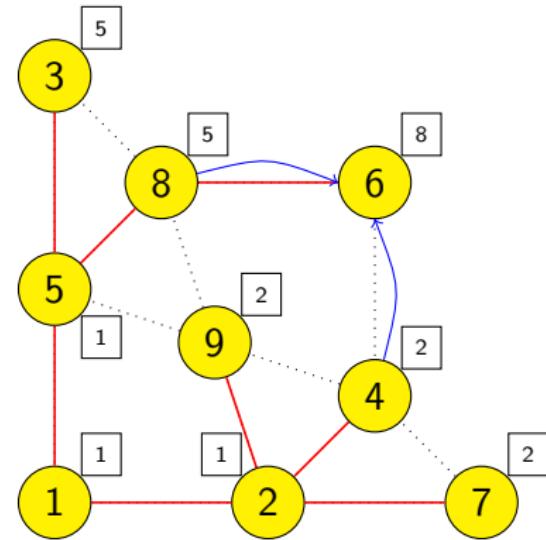
Vertex **6** marked as **frontier**.



Example of Execution of Breadth-First Search Algorithm

3rd Round

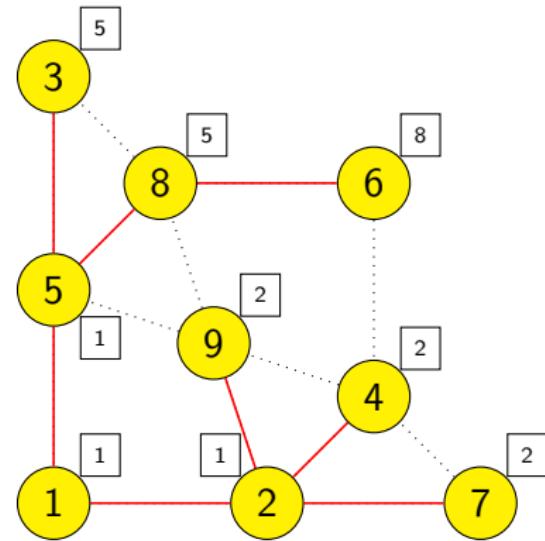
All vertices are discovered.



Example of Execution of Breadth-First Search Algorithm

Final Graph

Breadth-first search tree constructed.



Dijkstra's Algorithm

Goal: Find the shortest paths from a source node to all other nodes in a graph with **non-negative weights**.

Input: A weighted graph $G = (V, E)$ and a source node s .

Output: The minimum distances from the source node to every other node and predecessors to reconstruct the paths.

Main Idea: Iteratively expand nodes based on the currently known minimum distance.

Intuition of the Algorithm

We iteratively execute the following steps:

- 1 From our current position, we identify all adjacent nodes.
- 2 Keeping track in a list of the distance to reach each node, we update the distance to reach each node (the intuition of how to update it will be more clear in few minutes).
- 3 We move towards the node that has the minimum value in the list of distances.

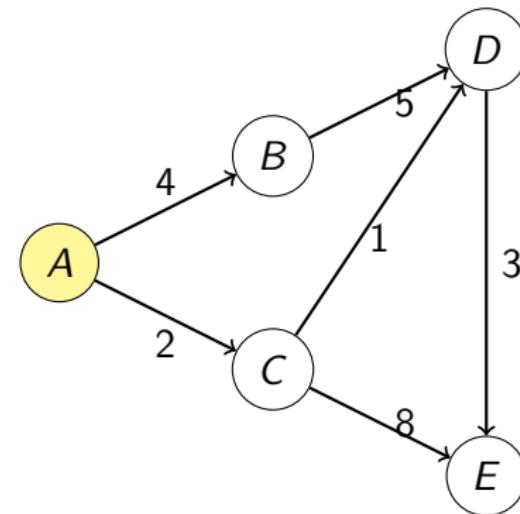
Dijkstra's Algorithm: Initialization

Initialization:

All nodes set to ∞ , except the source ($A = 0$).

Initial Distances:

Node	Distance	Predecessor
A	0	-
B	∞	-
C	∞	-
D	∞	-
E	∞	-



Round 1: Process Node A

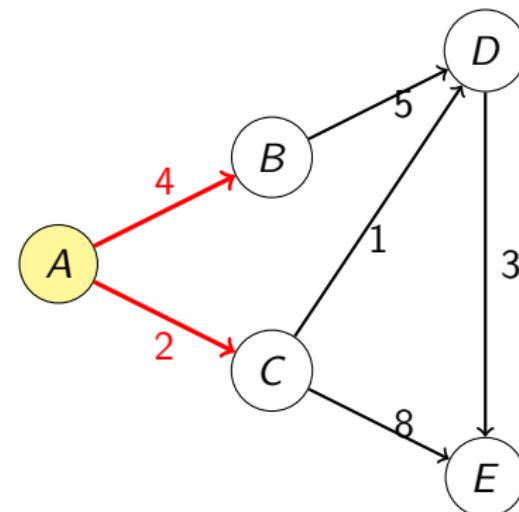
Current Node: A (distance 0).

Update distances for neighbors B and C: $d[B] = 4, d[C] = 2$

Predecessors:

$\text{pred}[B] = A, \text{pred}[C] = A$

Node	Distance	Predecessor
A	0	-
B	4	A
C	2	A
D	∞	-
E	∞	-



Round 2: Process Node C

Current Node: C (distance 2).

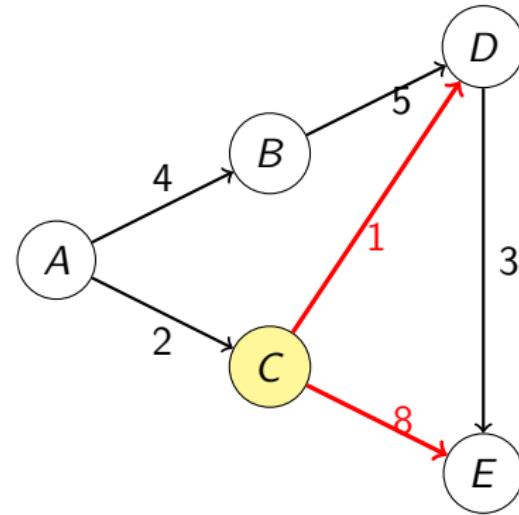
Update distances for neighbors D and E :

$$d[D] = 3, d[E] = 10$$

Predecessors:

$$pred[D] = C, pred[E] = C$$

Node	Distance	Predecessor
A	0	-
B	4	A
C	2	A
D	3	C
E	10	C

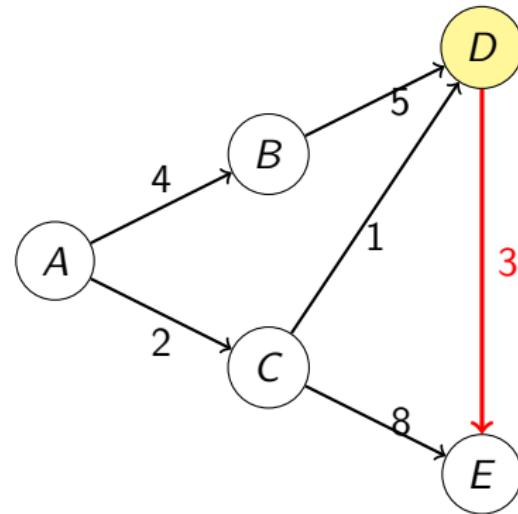


Round 3: Process Node *D***Current Node:** *D* (distance 3).Update distance for neighbor *E*:

$$d[E] = 6 \text{ (updated via } D)$$

Predecessor: $\text{pred}[E] = D$

Node	Distance	Predecessor
A	0	-
B	4	A
C	2	A
D	3	C
E	6	D

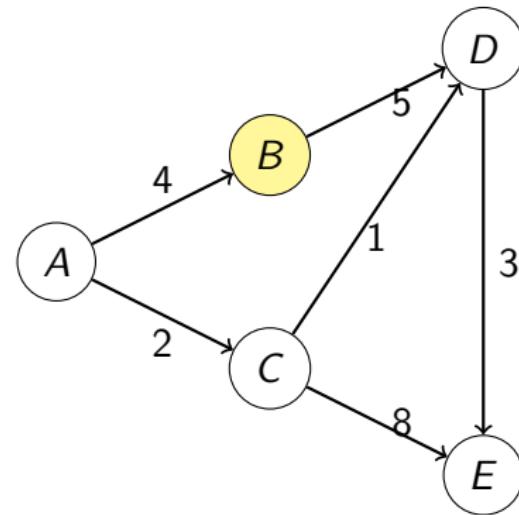


Round 4: Process Node *B*

Current Node: *B* (distance 4).

No updates are made, as all reachable nodes have shorter paths.

Node	Distance	Predecessor
A	0	-
B	4	A
C	2	A
D	3	C
E	6	D



Final Results

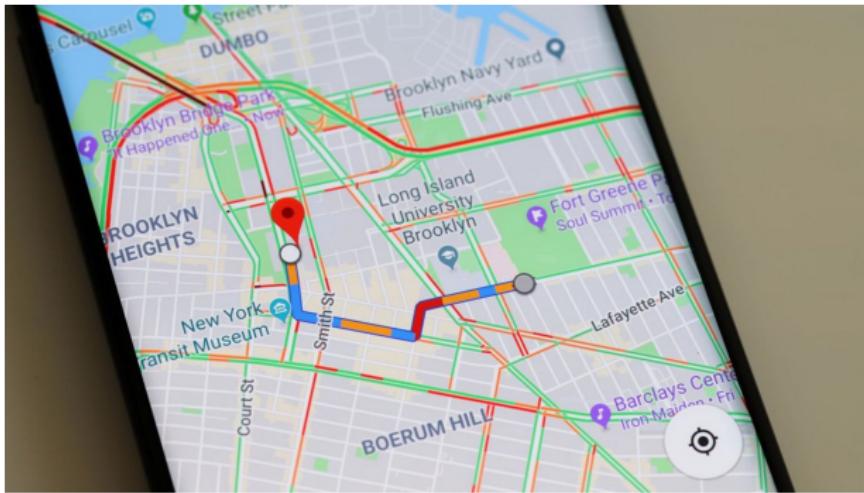
Shortest Paths and Final Distances:

Node	Distance	Predecessor
A	0	-
B	4	A
C	2	A
D	3	C
E	6	D

Pseudocode

- ➊ Initialize the distance of all nodes to ∞ , except the source node s (set $d[s] = 0$).
- ➋ Mark all nodes as unvisited.
- ➌ Repeat until all nodes have been visited:
 - ➍ Select the unvisited node u with the smallest known distance.
 - ➎ Mark u as visited.
 - ➏ For each unvisited neighbor v of u :
 - ➐ Calculate an alternative distance $alt = d[u] + w(u, v)$.
 - ➑ If $alt < d[v]$, update $d[v]$ and set $pred[v] = u$.

Google Maps and Dijkstra



https://youtu.be/Kuyq_HLSPTI?si=wnAliXs3Pv06GytE

Other SP algorithms

There are other algorithms to compute the shortest path in a graph (e.g., Depth First Search).

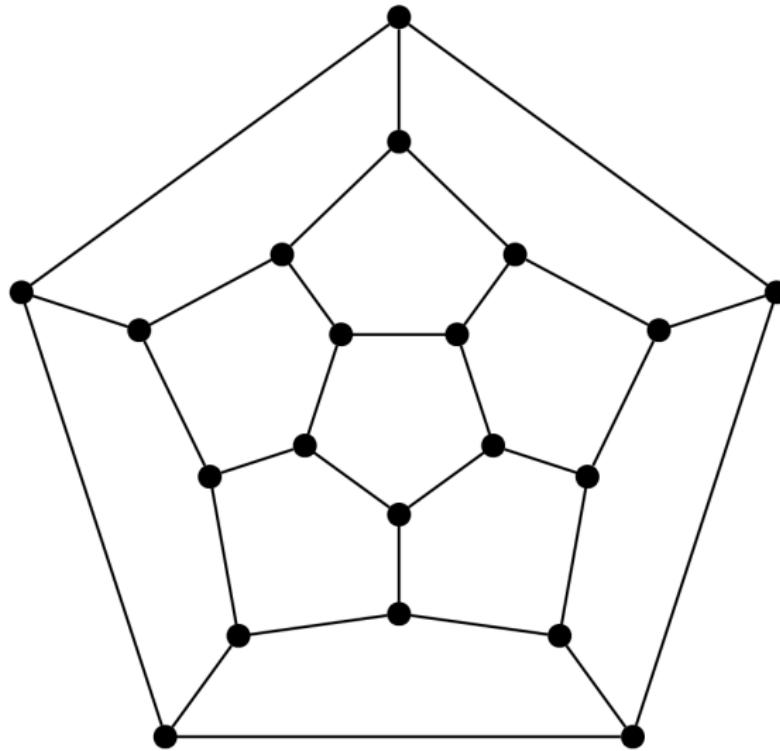
Other SP algorithms

There are other algorithms to compute the shortest path in a graph (e.g., Depth First Search).
And also other problems...

Hamilton's Game

- Sir William Hamilton invented a game corresponding to a graph whose twenty vertices were labeled with the names of twenty famous cities.
- The goal is to visit all twenty cities in such a way that every city is visited exactly once before returning back to the city where the tour started.

Hamilton Path



Hamiltonian Cycle Problem

Hamiltonian Cycle Problem

Find a cycle in a graph that visits every vertex exactly once.

Input: A graph G .

Output: A cycle in G that visits every vertex exactly once.

Algorithms for and Hamiltonian path

- The Hamiltonian path problem is considered an NP-Complete problem (i.e., we don't know an efficient problem to solve it!)

Graphs in Python

Open this Jupyter Notebook and let us see how to create and configure graphs: <https://drive.google.com/file/d/1cRjLIOG0A4nt0ZVwzGhZBJT2yWhXVn9view?usp=sharing>

