Principles of Computer Science Il
Introduction to Graph Theory

Marco Zecchini

Sapienza University of Rome

Lecture 6

M. Zecchini Principles of Computer Science |I: Introduction to Graph Theory Lecture 6 1 /42

Graph Theory
€000

ntroduction

A little bit of Chess

@ Knights move using a particular pattern.

@ Knights can move two steps in any of four
directions (left, right, up, and down)
followed by one step in a perpendicular
direction,

@ Two points are connected by a line if
moving from one point to another is a
valid knight move.

M. Zecchini Principles of Computer Science |l: Introduction to Graph Theory Lecture 6 2 /42

Graph Theory
000

ntroduction

A Chess Puzzle

@ Two white and two black knights on a
3 x 3 chessboard.

@ Two Knights cannot occupy the same
square.

@ Starting from the top configuration,

@ Can they move, using the usual chess
knight's moves, to occupy the bottom
configuration?

M. Zecchini Principles of Computer Science |l: Introduction to Graph Theory Lecture 6 3 /42

Graph Theory
[e]e] e}

Chess Diagrams

@ A Chess Diagram is used to represent movements of chess
pieces on the board.

@ Example of a 3 x 3 chessboard.

@ Two points are connected by a line if moving from one point
to another is a valid knight move.

M. Zecchini Lecture 6 4 / 42

Graph Theory
ocooe

ntroduction

Chess Diagrams — Equivalent Representations

An equivalent representation of the resulting diagram.

Now it is easy to see that knights move around a “cycle”.
Every knight's move corresponds to moving to a neighboring
point in the diagram — clockwise or counterclockwise
white-white-black-black cannot be transformed into
white-black-white-black

e 6 o

M. Zecchini Principles of Computer Science |I: Introduction to Graph Theory Lecture 6 5/ 42

Graph Theory
@®00000000000

Chess Diagrams & Graphs

@ Chess Diagrams are examples of graphs.
@ The points are called vertices and lines are called edges.
@ A simple graph of five vertices and six edges.
e We denote a graph by G = G(V, E), where
o V represents the set of vertices
V={ab,c,d e}
e E represents the set of edges
E ={(a,b),(a,¢),(b,c),(b,d),(c,d),(c,e)}

M. Zecchini Lecture 6 6 / 42

Graph Theory
O@0000000000

Hydrocarbons as Graphs and Structural Isomers

I
C, — 4 o
e ‘\H
H Methane
H\ H
Hm— G — Gt
H, \H
Ethane
W oH
Vo
PERS
Al
O Y Propane
H\ H\ H
H
> |
H \ | H l
H H H Butane
W
H\!,H Y
Ly
A
H:;C\ ! i\"‘ Isobutane
H

M. Zecchini T e BT

Graph Theory
00e000000000

Basic Definitions

@ We denote |V| = n — the number of vertices.

We denote |E| = m — the number of edges.

Two vertices u, v are called adjacent or neighboring vertices if

there exists an edge e = (u, v).

We say that edge e is incident to vertices u and v.

We say that vertices u and v are incident to edge e.

A loop is an edge from a node to itself: (u, u).

Two or more edges that have the same endpoints (u, v) are

called multiple edges.

@ The graph is called simple if it does not have any loops or
multiple edges.

M. Zecchini O e . BTN

Graph Theory
000800000000

Degree of the Vertex

@ The number of edges incident to a given vertex v is called the
degree of the vertex and is denoted d(v).

o For every graph G = G(V,E), > ,cy d(u) =2-|m|.

@ Notice that an edge connecting vertices v and w is counted in
the sum twice: first in the term d(v) and again in the term
d(w).

M. Zecchini T e . BTN

Graph Theory
0000e0000000

Directed & Undirected Graphs

M. Zecchini

@ Many Bioinformatics problems make use of directed graphs.

An edge can be undirected or directed.

An undirected edge e is considered an unordered pair, in other
words we assume that (u, v) and (v, u) are the same edge.

A directed edge e = (u, v) and € = (v, u) are different edges.
If the edges have a direction, the graph is directed (digraph).

If a graph has no direction, it is referred as undirected.

O)

@)

Lecture 6 10 / 42

Graph Theory
00000e000000

Directed Graphs

@ In directed graphs, each vertex u has:
o indegree(u) — the number of incoming edges,
o outdegree(u) — the number of outgoing edges.

e For every directed graph G = G(V/, E),
Z indegree(u) = Z outdegree(u)

ueV ueV

M. Zecchini e TR

Graph Theory
000000800000

Subgraphs & Complete Graphs

@ A subgraph G’ of G consists of a subset of V and E.
Thatis, G' = (V' E’) where V/ C V and E' C E.

@ A spanning subgraph contains all the nodes of the original
graph.

o If all the nodes in a graph are pairwise adjacent, the graph is
called complete.

M. Zecchini e e TR

Graph Theory
0000000 e0000

Triangles, Walks, Trails, Paths & Cycles

@ A triangle in an undirected graph is a triplet (u, v, w), where
u,v,w € V such that (u,v), (v,w),(w,u) € E.

@ A walk is a sequence of vertices and edges of a graph — Vertex
can be repeated. Edges can be repeated.

@ Trail is a walk in which no edge is repeated.

@ Path is a trail in which no vertex is repeated.

@ Paths that start and end at the same vertex are referred to as
cycles.

M. Zecchini

Lecture 6 13 / 42

Graph Theory
000000008000

Paths

@ A path of length k is a sequence of nodes (vp, vi, ..., vk),
where we have (v;,v;41) € E.

o If vi # vj forall 0 </ < j < k we call the path simple.

o If vp=vgforall 0 <ij<j<kand vy = v the path is a
cycle.

@ A path from node u to node v is a path (v, vi, ..., vk) such
that vp = v and v, = v.

M. Zecchini T e TR

Graph Theory
000000000 e00

Graph Connectivity

@ Two nodes u and v are connected if there is a path from u to
v.

@ A graph is called connected if all pairs of vertices can be
connected by a path, otherwise we say that the graph is
disconnected.

@ A graph is called complete if there is an edge between every
two vertices.

M. Zecchini Lecture 6 15 / 42

Graph Theory
000000000080

Graph Connectivity

@ Disconnected graphs can be decomposed into a set of one or
more connected components.

AN

M. Zecchini e TR

Graph Theory
00000000000

Forests & Trees

@ A simple graph that does not contain any cycles is called a
forest.

o A forest that is connected is called a tree.

@ A tree has n — 1 edges.

@ Any two of the following three statements imply that a graph

is a tree (and thus they also imply the third one):
@ The graph has n — 1 edges.
@ The graph does not contain any cycles.
© The graph is connected.

BN

M. Zecchini e . TR

Graph Theory
[JeJele]

Representation of Graphs

e Two standard ways to represent a graph G(V/, E):
@ A collection of adjacency lists.
o Usually prefered for sparse graphs.
o Sparse graph: |E| is much less than |V/|?.
@ An adjacency matrix.
@ Usually prefered for dense graphs.
o Dense graph: |E| is close to |V/|>.

12 s

1 2l 1{0 1001

) @) 2 1] P P34/ 2| 1520 1191
3 2] PHalz 3]0 1010

n.@ 4 g gl 410 1101
©) @) 5 4] 1] 2|/ 5.1 1 10lido

M. Zecchini e e TR

Graph Theory
[e] Tele]

Adjacency List

@ Adjacency List Representation
e Consists of an array Adj of |V/| lists, one for each vertex in V.

@ For each u € V, the adjacency list Adj[u] contains all the
vertices adjacent to v in G.

@ The vertices are stored in arbitrary order.

172" 0
1 2] Ps5]/ 1/0 100 1
2 s3] el 27| 1520 2o 191
3 2| 4|/ 3]0 1. 010
4 21l il 410 11 0 1
5 4 P F2[7 5|11 100l

M. Zecchini e e TR

Graph Theory
[e] Tele]

Adjacency List

@ Adjacency List Representation
e Consists of an array Adj of | V| lists, one for each vertex in V.

@ For each u € V, the adjacency list Adj[u] contains all the
vertices adjacent to v in G.

@ The vertices are stored in arbitrary order.

TG

1 2] P57 1/0 100 1

) (2) 2 1[5 A3 Fal] 27| 1520 2o 191
3 2] Pa]s 3/101 010

“.9 4 - - 410 11 0 1
) (4 5 a4l Hi[P2/ 5|11 0t

Does this remind you a data structure we saw last week?

M. Zecchini T e TR

Graph Theory
[e]e] o]

Adjacency Matrix

@ Adjacency Matrix Representation of G(V/, E)

@ We assume that vertices are numbered 1,2,...|V/|.
@ The matrix |V/| x | V| matrix.

o A= (ajj), where

0, otherwise.

': {1, if (i,j) € E.

12 795
1 S HZ 1o 100 1
) (2) 2 1] P P3[4/ 2| 1520 dre 1381
3 2] P4/ 3]0 1010
n’e 4 2 PP/ 410 1101
©) O 5 s Pl F2l7 5011010

M. Zecchini T e TN

Graph Theory
[e]e]e])

Adjacency List and Adjacency Matrix Examples

@ Adjacency Matrix Representation

123456

1 2 P{4a]/] 1lo1 0100

2 5 2000010

(D (2) (3) 3 6] P{51/] 310000 11
4 iz 4lo 10000

5 4]/ 51000100

() () O» 6 61/ 6/0. 00001

M. Zecchini e T

SP: Breadth-first Search
@0000

Paths

@ A path is a sequence of vertices and edges of a graph —
Vertices cannot be repeated. Edges cannot be repeated.

@ A path of length k is a sequence of vertices (vo, v1,..., Vk),
where we have (v;,v;41) € E.

o If vi # vjforall 0 </ < j < k we call the path simple.

o If vy =vgforall 0 <ij<j<kand vy = vy the path is a
cycle.

@ A path from vertex u to vertex v is a path (vo, v1,..., k)
such that vg = v and vy, = v.

M. Zecchini T e TR

SP: Breadth-first Search
(o] lele]e]

Shortest Paths

@ A shortest path between vertices u and v is a path from v to
v of minimum length.

@ The distance d(u, v) between vertices u and v is the length of
a shortest path between u and v.

o Ifu and v are in different connected component then

% 8

M. Zecchini

Lecture 6 23 / 42

SP: Breadth-first Search
00e00

Graph Diameter

@ The diameter D of a connected graph is the maximum (over
all pairs of vertices in the graph) distance.

D= max d(u,v)

(u,v):u,v connected
o If a graph is disconnected then we define the diameter to be
the maximum of the diameters of the connected components.

/}\

Lecture 6 24 / 42

M. Zecchini

Breadth-first Search

@ Given a graph G(V/, E) and a distinguished source vertex u,

@ breadth-first search systematically explores the edges of G to
“discover” every vertex that is reachable from w.

@ It computes the distance from u to each reachable vertex.

@ It computes a spanning subgraph of G, the “breadth-first
tree”", with root u that contains all reachable vertices.

@ It computes all possible shortest paths starting from u:
for any vertex v reachable from u, the path in the
breadth-first tree from u to v corresponds to a “shortest
path” from u to v in G.

@ BFS works with unweighted graphs or graphs where all edges
have the same costs.

M. Zecchini Principles of Computer Science |I: Introduction to Graph Theory Lecture 6 25 / 42

SP: Breadth-first Search
[ee]e]e]]

Example of Execution of Breadth-First Search Algorithm

Initial Graph

The graph contains 9 vertices, 14

edges [
Vertex 1 is the source node. @

Vertex 1 marked as discovered. ._D @D
Vertices 2,5 marked as frontier.
All other vertices are not discovered. @ i []

o o @

Lecture 6 26 / 42

M. Zecchini

SP: Breadth-first Search
[ee]e]e]]

Example of Execution of Breadth-First Search Algorithm

15t Round
Vertex 1 examines adjacent vertices.]
Vertice 2,5 marked as discovered. @

Vertices 3,4,7,8,9 marked as the -
frontier. @)D

examlnes QE
] [G)D

Lecture 6 26 / 42

M. Zecchini

SP: Breadth-first Search
[ee]e]e]]

Example of Execution of Breadth-First Search Algorithm

2"d Round

Vertices 3,4,7,8,9 marked as
discovered.

Vertex 6 marked as frontier.

Lecture 6 26 / 42

M. Zecchini

SP: Breadth-first Search
[ee]e]e]]

Example of Execution of Breadth-First Search Algorithm

3" Round
All vertices are discovered.

M. Zecchini

Lecture 6 26 / 42

SP: Breadth-first Search
[ee]e]e]]

Example of Execution of Breadth-First Search Algorithm

Final Graph
Breadth-first search tree constructed.

M. Zecchini

Lecture 6 26 / 42

SP: Dijkstra’s Algorithm
90000000000

Dijkstra’s Algorithm

Goal: Find the shortest paths from a source node to all other
nodes in a graph with non-negative weights.

Input: A weighted graph G = (V, E) and a source node s.
Output: The minimum distances from the source node to every
other node and predecessors to reconstruct the paths.

Main ldea: lteratively expand nodes based on the currently known
minimum distance.

M. Zecchini Principles of Computer Science |I: Introduction to Graph Theory Lecture 6 27 / 42

SP: Dijkstra’s Algorithm
0@000000000

Intuition of the Algorithm

We iteratively execute the following steps:
@ From our current position, we identify all adjacent nodes.

@ Keeping track in a list of the distance to reach each node, we
update the distance to reach each node the (the intuition of
how to update it will be more clear in few minutes).

© We move towards the node that has the minimum value in
the list of distances.

M. Zecchini Principles of Computer Science |I: Introduction to Graph Theory Lecture 6 28 / 42

SP: Dijkstra’s Algorithm
00000000000

Dijkstra’s Algorithm: Initialization

Initialization:

All nodes set to oo, except the
source (A =0).

Initial Distances:

Node | Distance | Predecessor
A 0 -
B 00 -
C o0 -
D 00 -
E 00 -

M. Zecchini Lecture 6 29 / 42

SP: Dijkstra’s Algorithm
[e]e]e] lelelele]ele]e)

Round 1: Process Node A

Current Node: A (distance 0).
Update distances for neighbors B
and C: d[B] =4,d[C] =2

Predecessors:
pred[B] = A, pred[C] = A

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 00 -
E 00 -
M. Zecchini Lecture 6 30 / 42

Round 2: Process Node C

Current Node: C (distance 2).
Update distances for neighbors D
and E:

d[D] =3,d[E] =10
Predecessors:
pred|D] = C, pred[E] = C

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 10 C
M. Zecchini Lecture 6 31 / 42

SP: Dijkstra’s Algorithm
00000e00000

Round 3: Process Node D

Current Node: D (distance 3).
Update distance for neighbor E:

d[E] = 6 (updated via D)
Predecessor: pred[E] = D

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D
M. Zecchini Lecture 6 32 /42

SP: Dijkstra’s Algorithm
00000080000

Round 4: Process Node B

Current Node: B (distance 4).
No updates are made, as all
reachable nodes have shorter

paths.
Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D

M. Zecchini Principles of Computer Science l: Introduction to Graph Theory Lecture 6 33 / 42

SP: Dijkstra’s Algorithm
0000000e000

Final Results

Shortest Paths and Final Distances:

Node | Distance | Predecessor
A 0 -
B 4 A
C 2 A
D 3 C
E 6 D

M. Zecchini e . TR

SP: Dijkstra’s Algorithm
00000000800

Pseudocode

@ Initialize the distance of all nodes to oo, except the source
node s (set d[s] = 0).

@ Mark all nodes as unvisited.

© Repeat until all nodes have been visited:

e Select the unvisited node u with the smallest known distance.
e Mark u as visited.
e For each unvisited neighbor v of u:

o Calculate an alternative distance alt = d[u] + w(u, v).

o If alt < d[v], update d[v] and set pred[v] = u.

M. Zecchini e T

SP: Dijkstra’s Algorithm
00000000080

Google Maps and Dijkstra

g Ave

Frshie

https://youtu.be/Kuyq HLSPtI?si=wnAliXs3Pv06GytE

M. Zecchini e T

https://youtu.be/Kuyq_HLSPtI?si=wnAliXs3PvO6GytE

SP: Dijkstra’s Algorithm
0000000000 e

Other SP algorithms

There are other algorithms to compute the shortest path in a
graph (e.g., Depth First Search).

M. Zecchini T e TN

SP: Dijkstra’s Algorithm
0000000000 e

Other SP algorithms

There are other algorithms to compute the shortest path in a
graph (e.g., Depth First Search).
And also other problems...

M. Zecchini T e TN

Hamiltonian Paths
[leJele]e]

Hamilton's Game

@ Sir William Hamilton invented a game corresponding to a
graph whose twenty vertices were labeled with the names of
twenty famous cities.

@ The goal is to visit all twenty cities in such a way that every
city is visited exactly once before returning back to the city
where the tour started.

M. Zecchini e TR

Hamiltonian Paths
(o] Jelele]

Hamilton Path

M. Zecchini e TN

Hamiltonian Paths
[e]e] le]e]

Hamiltonian Cycle Problem

Hamiltonian Cycle Problem
Find a cycle in a graph that visits every vertex exactly once.

Input: A graph G.

Output: A cycle in G that visits every vertex exactly once.

M. Zecchini e TN

Hamiltonian Paths
00080

Algorithms for and Hamiltonian path

@ The Hamiltonian path problem is considered an NP-Complete
problem (i.e., we don't know an efficient problem to solve it!)

M. Zecchini T e TN

Hamiltonian Paths
0000e

Graphs in Python

Open this Jupyter Notebook and
let us see how to create and

o p_
configure graphs: https:
//drive.google.com/file/d/ J u py e r
1cRjLIOGOA4nt0ZVwzGhZBJT2yWhXVnS

view?7usp=sharing \ ’

M. Zecchini

Lecture 6 42 / 42

https://drive.google.com/file/d/1cRjLI0G0A4nt0ZVwzGhZBJT2yWhXVn9I/view?usp=sharing
https://drive.google.com/file/d/1cRjLI0G0A4nt0ZVwzGhZBJT2yWhXVn9I/view?usp=sharing
https://drive.google.com/file/d/1cRjLI0G0A4nt0ZVwzGhZBJT2yWhXVn9I/view?usp=sharing
https://drive.google.com/file/d/1cRjLI0G0A4nt0ZVwzGhZBJT2yWhXVn9I/view?usp=sharing
https://drive.google.com/file/d/1cRjLI0G0A4nt0ZVwzGhZBJT2yWhXVn9I/view?usp=sharing

	Graph Theory
	Introduction
	Basic Definitions
	Representation of Graphs

	SP: Breadth-first Search
	SP: Dijkstra's Algorithm
	Hamiltonian Paths

