
Exercise 1

You are given a sorted array of integers A and a target value x.​
Write pseudocode for an algorithm that searches for x in A using the binary search
technique.​
At each step, the algorithm must:

1.​ Compute the middle index mid of the current search interval.
2.​ Compare A[mid] with x.
3.​ Restrict the search to the left or right half of the array accordingly.

After each iteration, print:

●​ the current values of low, high, and mid,
●​ the value A[mid].

The algorithm must terminate when:

●​ x is found (return its index), or
●​ the search interval becomes empty (return -1).​

Example

Input:

A = [1, 3, 5, 7, 9, 11, 13]
x = 9

Expected output:

low=0 high=6 mid=3 A[mid]=7
low=4 high=6 mid=5 A[mid]=11
low=4 high=4 mid=4 A[mid]=9
→ target found at index 4

What to deliver

●​ The pseudocode of the algorithm.
●​ A brief explanation of how binary search works.
●​ The time complexity and space complexity of the algorithm.
●​ A short explanation of why the array must be sorted.

Exercise 2

You are given a list of dictionaries, each representing an order with the following fields:

●​ order_id: unique identifier of the order
●​ amount: total amount of the order
●​ customer_type: either "regular" or "premium"

Your task is to use the MapReduce paradigm (i.e., map, filter, and reduce) to:

1.​ Compute the average order amount for each customer type
2.​ Return a list of dictionaries containing only the customer types whose average

order amount is strictly greater than 100

Example input
orders = [
 {"order_id": 1, "amount": 120, "customer_type": "regular"},
 {"order_id": 2, "amount": 80, "customer_type": "regular"},
 {"order_id": 3, "amount": 200, "customer_type": "premium"},
 {"order_id": 4, "amount": 150, "customer_type": "premium"},
 {"order_id": 5, "amount": 90, "customer_type": "regular"},
 {"order_id": 6, "amount": 60, "customer_type": "regular"},
 {"order_id": 7, "amount": 180, "customer_type": "premium"},
 {"order_id": 8, "amount": 170, "customer_type": "premium"},
 {"order_id": 9, "amount": 70, "customer_type": "regular"},
 {"order_id": 10, "amount": 50, "customer_type": "regular"},
 {"order_id": 11, "amount": 140, "customer_type": "vip"},
 {"order_id": 12, "amount": 160, "customer_type": "vip"},
 {"order_id": 13, "amount": 110, "customer_type": "vip"},
 {"order_id": 14, "amount": 95, "customer_type": "vip"},
 {"order_id": 15, "amount": 145, "customer_type": "vip"}
]

Expected output
[
 {"customer_type": "premium", "average_amount": 175.0},
 {"customer_type": "vip", "average_amount": 130.0}
]

Notes

●​ A solution that does not use map and filter is not valid. reduce can be
optional.

●​ Grouping by customer_type can be done using standard Python constructs before
applying MapReduce

Exercise 3
In a synthetic biology experiment, a micro-organism is transmitting a signal across a chain of
molecular checkpoints.

At each checkpoint, the signal propagation is controlled by two independent subsystems:

●​ a local subsystem, influenced by what happened at checkpoint n − 1;
●​ a delayed subsystem, influenced by what happened at checkpoint n − 3.

Because the two subsystems operate independently, the total number of valid signaling
cascades at checkpoint n is obtained by multiplying the number of possibilities of the two
subsystems.

Base cases

●​ ways(0) = 1​
(there is exactly one trivial way to transmit no signal)

●​ ways(1) = 2​
(two distinct elementary activation patterns)

●​ ways(2) = 3​
(three valid short signaling cascades)

Recurrence

For n ≥ 3:

​ ways(n) = ways(n - 1) * ways(n - 3)

Problem Description

Given an integer n, compute the number of distinct signaling cascades ways(n) according
to the multiplicative recurrence above.

Function Description

def countSignalWaysProduct(n: int) -> int:​
​ # Write your code here

Parameters

●​ n: target checkpoint index (n ≥ 0)

Returns

●​ int: number of distinct signaling cascades at checkpoint n

Example

Input

5

Computation

ways(3) = ways(2) * ways(0) = 3 * 1 = 3
ways(4) = ways(3) * ways(1) = 3 * 2 = 6
ways(5) = ways(4) * ways(2) = 6 * 3 = 18

Output

18

Hint

This is still a 1-dimensional dynamic programming problem.

Unlike additive recurrences, here each state combines independent contributions, so the
number of solutions grows multiplicatively.

Use an iterative DP array to avoid recomputation.

Test

Input

10

Output

102036672

	Exercise 1
	Example
	What to deliver

	Exercise 2
	Example input
	Expected output
	Notes

	Exercise 3
	Base cases
	Recurrence
	Problem Description
	Function Description
	Parameters
	Returns
	Example
	Hint
	Test

