
June 12, 2025

Efficient Query Verification for Blockchain Superlight Clients Using
SNARKs

Ivan Visconti
Sapienza University of Rome

Stefano De Angelis
Nethermind

Andrea Vitaletti
Sapienza University of Rome

Marco Zecchini
Sapienza University of Rome

Distributed Ledger Technologies Workshop (DLT 2025)

Contact me at:
zecchini@diag.uniroma1.it

Transactions

Transactions

Defi

Transactions

Defi

Auction

NFT management

E-voting

RPC Model

r

RPC Model

r

r

r

Applications
might require specific queries

RPC Model

r

trust!

Light Client Model

r, r’, r’’

Small portion of the
blockchain (i.e.,
header)

f(r,r’,r’’)

Merkle proofs

[Nak 2009] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system ” - 2009

Light Client Model

r, r’, r’’

Small portion of the
blockchain (i.e.,
header)

If application query
involves many

transactions the user
has to download a lot of

data!

f(r,r’,r’’)

Proof Model

R,

- chaining of the headers is correct
- r, r’,r’’ belongs to the ledger
- R = f(r,r’,r’’)

[XZC+ 2022] T. Xie, J. Zhang, Z. Cheng et al., “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022

Proof Model

R,

- chaining of the headers is correct
- r, r’,r’’ belongs to the ledger
- R = f(r,r’,r’’)

[XZC+ 2022] T. Xie, J. Zhang, Z. Cheng et al., “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022
[TZYT 2022] E. N. Tas, D. Zindros, L. Yang, D. Tse, “Light clients for lazy blockchains” - FC - 2024

If application
query involves

many
transaction

generating the
proof costs a lot

(~ 50 Million
dollars per year
[TZYT 2022])

Map-Reduce queries

…

Low resource constraints for the
client obtaining answers to
application specific queries without
trusting any server (or oracle)

Feasible for the server (or oracle)
computing a proof proving the
correctness of application
specific queries

Our Results
We propose a new stateless superlight client:

1 2

Stateless Superlight Client architecture

EFFICIENCY:
We took the best of RPC
and proof models

Then, user verifies
that 1) is the
same, 2) is
correct w.r.t. to
and r

Map-Reduce queries

…

FEASIBILITY:
One proof per map
execution

It is possible to aggregate
them in a single proof

SSLC Evaluation
COMMUNICATION EFFICIENCY IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.

We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

Nakamoto Light Client (NLC) performs the
following step:
1. The NLC stores all the headers of the voting

period;
2. Through RPC, NLC downloads all the

transactions (70k) and all the Merkle tree
proofs;

SSLC Evaluation
COMMUNICATION EFFICIENCY IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.

We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

SSLC performs the following step:
1. The SSLC queries the smart contract through an RPC to retrieve

the number of votes for a candidate;
2. SSLC obtains from the oracle server the computed answer along

with a proof that demonstrates how the retrieved transactions
contribute to the final result;

3. SSLC fetches and compares the relevant block headers from a
set of full nodes;

4. Given the trusted headers, the SSLC verifies the proof provided
by the oracle

Nakamoto Light Client (NLC) performs the
following step:
1. The NLC stores all the headers of the voting

period;
2. Through RPC, NLC downloads all the

transactions (70k) and all the Merkle tree
proofs;

SSLC Evaluation
COMMUNICATION EFFICIENCY IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.

We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

NLC SSLC

Download
Data

1.1 GB 9 MB

Experiments

We verify Merkle membership proofs while
computing the average value of a set of Bitcoin

transfer transactions

The following experiments were conducted using Plonky2 as
ZK-SNARK instantiation,

because it easily allows to aggregate proofs (through its
recursive approach).

Experiments

Recursive proving approach:
● Each recursive step handles a batch of 1000 transactions

(i.e., it simulates #txn selected per block by during the map
function)

● We observed that the average recursion time per step to
generate the proof was approximately 30 seconds.

FEASIBILITY ON INCREASING BATCH OF TRANSACTIONS

We run the test on an Intel(R) Xeon(R) Silver 4216@2.1
GHz, 64 cores and 512 GB of RAM

Consumption increases
linearly with the size of the
batch

Map-reduce queries that involve a large number of
transactions, which is a reasonable scenario in the

future, distributed across a limited number of blocks,
our solution outperforms the NLC approach

Discussion

 When queries span over a large number of blocks, the
benefits of this approach become less apparent. In these

cases, the SSLC has to download more transaction
roots/block hashes, making it similar to that of NLC.

Pre-print

June 12, 2025

Distributed Ledger Technologies Workshop (DLT 2025)

THANKS!

This presentation includes icons from Flaticon

