Distributed Ledger Technologies Workshop (DLT 2025)

Efficient Query Verification for Blockchain Superlight Clients Using

SNARKS
Stefano De Angelis lvan Visconti
Nethermind Sapienza University of Rome
Andrea Vitaletti Marco Zecchini
Sapienza University of Rome Sapienza University of Rome
Contact me at: June 12, 2025

zecchini@diag.uniroma.it

Transactions

Transactions

Defi

&

Transactions

Defi

Aok

Auction

E-voting

2@

NFT management

W -

J 0

e

RPC Model

RPC Model

Number of votes per voting system Voting system populatiry across the whole
snapshot data

Al®

basic @
single-choice @
weighted @
approval @
ranked-choice @
quadratic @
copeland @
custom @

@ @goverland 12d @

Applications
might require specific queries

Voting systems popularity by VOTES amount the DAOs who started activity during the last month

Al®

basic @
single-choice @
weighted @
ranked-choice ®
quadratic @
copeland @
approval @

@ @goverland

Proposal and Voting Activity Uniswap Proposal and Voting Activity

20k
200m
10k
100m
0 0
Jan 2021 Jan 2022 Jan 2023 Jan 2024 Jan 2025
@asterix111

Ale
created_proposal: @
voting_power_top @
voting_power_sun @

number_of_votes @

+ 21min @

trust!

] Light Client Model

Small portion of the =™
blockchain (i.e., EE0)
header)
n _aaa L) a > 1
.I:(r,rs,rn) I‘, r,, r” l %@\ () l
R R RO l

Merkle proofs

=@
=
[—]

le— e |

[Nak 2009] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system ” - 2009

Small portion of the
blockchain (i.e.,

header)
p _Qaa L oa
f(r,r,,r”) § r,, r %@\

B R B

W -

If application query
involves many
transactions the user
has to download a |ot of
data!

Light Clien

J 0

I

del

o Proof Model

W -
)

N QaQ L A ¢
P
R, 77 | §©\ :

- chaining of the headers is correct
I belongs to the ledger

-1, 1"
-R=A1(r,rr’)

[XZC+2022] T. Xie, J. Zhang, Z. Cheng et al, “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022

Proo del

) H
=
=2
s _Qaa L 4
< -,
=
R, T i — O
/ ¢
- chaining of the headers is correct
-1, r'r” belongs to the ledger
-R=A1(rr,r’ —
e =@ &
) O

[XZC+2022] T. Xie, J. Zhang, Z. Cheng et al,, “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022

[TZYT 2022] E. N. Tas, D. Zindros, L. Yang, D. Tse, “Light clients for lazy blockchains” - FC - 2024

If application
query involves
many
transaction
generating the
proof costs a lot
(~ 50 Million
dollars per year
[TZYT 2022)])

Map-Reduce queries

B B2 Bn-t Bn
Genesis [€— k1:3, k2:2, [€— B1 [€— k{2 <] — Input
K14 e k2:3k2:4
Intermediate
| |k1 3:4K2:2 | k2:3+4 Keys
. Shuffle
| k17,2 | | k2:27.3 | and sort
‘ ‘ Reduce
output k1:9, k2:12
k2:<12 4>
Involved
Transactions
(e.g. k1:3) -
Full node Client

Transactions MT roots

Our Results

We propose a new stateless superlight client:

Low resource constraints for the Feasible for the server (or oracle)
client obtaining answers to computing a proof proving the
application specific queries without correctness of application

trusting any server (or oracle) specific queries

Stateless Superlight Client architecture

User
fetch
transactions
root and count

@l o

FullNodeZ FallNode1 | . Then, user

verifies that 1) st
B: E DER=n

isthe same, 2) 7
Blockchain Network IS correct w.r.t. st
toandr

We took the best of RPC
and proof models

Full Node N

Map-Reduce queries

Genesis [€—] k1 52422]] K?ZZ <« K2?3nK124 | B" Input
|k1 3¢4k22| NS 3 | K2:3:4 | I __,_,_Irj_e@;gate
:
SNARK
One proof per map |
execution
Shuffle
and sort
It is p933|blg to aggregate o
them in a single proof
output k1:9, k2:12 |
SNARK i

Involved
Transactions

e.g. k1:3)
Full node (09

Y

Client
Transactions MT roots

SSLC Evaluation
IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.
We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

Nakamoto Light Client (NLC) performs the

following step:

1. The NLC stores all the headers of the voting
period;

2. Through RPC, NLC downloads all the
transactions (70k) and all the Merkle tree
proofs;

SSLC Evaluation
IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.
We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

SSLC performs the following step:

1. The SSLC queries the smart contract through an RPC to retrieve
the number of votes for a candidate;

2. SSLC obtains from the oracle server the computed answer along
with a proof that demonstrates how the retrieved transactions
contribute to the final result;

3. SSLC fetches and compares the relevant block headers from a
set of full nodes;

4. Given the trusted headers, the SSLC verifies the proof provided
by the oracle

Nakamoto Light Client (NLC) performs the

following step:

1. The NLC stores all the headers of the voting
period;

2. Through RPC, NLC downloads all the
transactions (70k) and all the Merkle tree
proofs;

SSLC Evaluation

IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a

smart contract.

We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

NLC

SSLC

Download
Data

11GB

9 MB

Experiments

We verify Merkle membership proofs while
computing the average value of a set of Bitcoin
transfer transactions

The following experiments were conducted using Plonky2 as

1\ ZK-SNARK instantiation,
BENCH because it easily allows to aggregate proofs (through its
MARKING

recursive approach).

Experiments
ON INCREASING BATCH OF TRANSACTIONS

Workload Proof Size (KB) ’ Proves | Nekdicn
’ Time (s) Memory (GB) | Time (s) Memory (GB)
10 96.5 0.314 0.213 0.010 0.213
10? 124.8 3.418 0.320 0.020 0.270
10° 156.73 29.088 1.110 0.020 0.717
10* 156.98 304.273 1.420 0.010 1.040
10° 156.98 3052.504 1.480 0.010 1.090
10° 156.98 30434.426 2.060 0.010 1.660
Table 2: Performance measurements for different numbers of leaves.

Recursive proving approach:

e Eachrecursive step handles a batch of 1000 transactions
(i.e. it simulates #txn selected per block by during the map
function)

e We observed that the average recursion time per step to
generate the proof was approximately 30 seconds.

We run the test on an Intel(R) Xeon(R) Silver 4216@2.1
GHz, 64 cores and 512 GB of RAM

Memory Usage (MB)

Time (seconds)

53 il e Proof Time
0* . .

” ~m - Verify Time
o)

10? 10 10!
Number of Leaves (n)

10! 10? 10* 10! 10°
Number of Leaves (n)

Consumption increases
linearly with the size of the
batch

Discussion

Map-reduce queries that involve a large number of
transactions, which is a reasonable scenario in the
future, distributed across a limited number of blocks,
our solution outperforms the NLC approach

When queries span over a large number of blocks, the
benefits of this approach become less apparent. In these
cases, the SSLC has to download more transaction
roots/block hashes, making it similar to that of NLC.

Pre-print

Distributed Ledger Technologies Workshop (DLT 2025)

THANKS!

This presentation includes icons from Flaticon

June 12, 2025

