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] Light Client Model
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[Nak 2009] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system ” - 2009
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o Proof Model
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[XZC+2022] T. Xie, J. Zhang, Z. Cheng et al, “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022
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[XZC+2022] T. Xie, J. Zhang, Z. Cheng et al,, “zkBridge: Trustless Cross-chain Bridges Made Practical” - CCS - 2022

[TZYT 2022] E. N. Tas, D. Zindros, L. Yang, D. Tse, “Light clients for lazy blockchains” - FC - 2024

If application
query involves
many
transaction
generating the
proof costs a lot
(~ 50 Million
dollars per year
[TZYT 2022)])




Map-Reduce queries
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Our Results

We propose a new stateless superlight client:

Low resource constraints for the Feasible for the server (or oracle)
client obtaining answers to computing a proof proving the
application specific queries without correctness of application

trusting any server (or oracle) specific queries




Stateless Superlight Client architecture
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Map-Reduce queries
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SSLC Evaluation
IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.
We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

Nakamoto Light Client (NLC) performs the

following step:

1. The NLC stores all the headers of the voting
period;

2. Through RPC, NLC downloads all the
transactions (70k) and all the Merkle tree
proofs;




SSLC Evaluation
IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a
smart contract.
We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)

SSLC performs the following step:

1. The SSLC queries the smart contract through an RPC to retrieve
the number of votes for a candidate;

2. SSLC obtains from the oracle server the computed answer along
with a proof that demonstrates how the retrieved transactions
contribute to the final result;

3. SSLC fetches and compares the relevant block headers from a
set of full nodes;

4. Given the trusted headers, the SSLC verifies the proof provided
by the oracle

Nakamoto Light Client (NLC) performs the

following step:

1. The NLC stores all the headers of the voting
period;

2. Through RPC, NLC downloads all the
transactions (70k) and all the Merkle tree
proofs;




SSLC Evaluation

IN E-VOTING USE CASE

Verification of statistics on an on-chain voting system governed by a

smart contract.

We consider an election lasting one day, ~7000 blocks, with a
candidate receiving 70k votes (i.e., 10 per block)
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Experiments

We verify Merkle membership proofs while
computing the average value of a set of Bitcoin
transfer transactions

The following experiments were conducted using Plonky2 as

1\ ZK-SNARK instantiation,
BENCH because it easily allows to aggregate proofs (through its
MARKING

recursive approach).




Experiments
ON INCREASING BATCH OF TRANSACTIONS

Workload Proof Size (KB) ’ Proves | Nekdicn
’ Time (s) Memory (GB) | Time (s) Memory (GB)
10 96.5 0.314 0.213 0.010 0.213
10? 124.8 3.418 0.320 0.020 0.270
10° 156.73 29.088 1.110 0.020 0.717
10* 156.98 304.273 1.420 0.010 1.040
10° 156.98 3052.504 1.480 0.010 1.090
10° 156.98 30434.426 2.060 0.010 1.660
Table 2: Performance measurements for different numbers of leaves.

Recursive proving approach:

e  Eachrecursive step handles a batch of 1000 transactions
(i.e. it simulates #txn selected per block by during the map
function)

e  We observed that the average recursion time per step to
generate the proof was approximately 30 seconds.

We run the test on an Intel(R) Xeon(R) Silver 4216@2.1
GHz, 64 cores and 512 GB of RAM
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Discussion

Map-reduce queries that involve a large number of
transactions, which is a reasonable scenario in the
future, distributed across a limited number of blocks,
our solution outperforms the NLC approach

When queries span over a large number of blocks, the
benefits of this approach become less apparent. In these
cases, the SSLC has to download more transaction
roots/block hashes, making it similar to that of NLC.
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